In this work we report on the extensive characterization of amorphous silicon carbide (a-SiC) coatings prepared by physical deposition methods. Our investigation is performed within the perspective application of a-SiC as an optical material for high-precision optical experiments and, in particular, in gravitational wave interferometry. We compare the results obtained with two different sputtering systems a standard radio frequency (rf) magnetron sputtering and an ion-beam sputtering] to grasp the impact of two different setups on the repeatability of the results. After a thorough characterization of structural, morphological, and compositional characteristics of the prepared samples, we focus on a detailed study of the optical and mechanical losses in those materials. Mechanical losses are further investigated from a microscopic point of view by comparing our experimental results with molecular dynamic simulations of the amorphous SiC structure: first we define a protocol to generate a numerical model of the amorphous film, capturing the main features of the real system; then we simulate its dynamical behavior upon deformation in order to obtain its mechanical response.

Measurement and Simulation of Mechanical and Optical Properties of Sputtered Amorphous SiC Coatings

Favaro, G.;Corso, A. J.
Membro del Collaboration Group
;
Pelizzo, M. G.
Membro del Collaboration Group
;
2022

Abstract

In this work we report on the extensive characterization of amorphous silicon carbide (a-SiC) coatings prepared by physical deposition methods. Our investigation is performed within the perspective application of a-SiC as an optical material for high-precision optical experiments and, in particular, in gravitational wave interferometry. We compare the results obtained with two different sputtering systems a standard radio frequency (rf) magnetron sputtering and an ion-beam sputtering] to grasp the impact of two different setups on the repeatability of the results. After a thorough characterization of structural, morphological, and compositional characteristics of the prepared samples, we focus on a detailed study of the optical and mechanical losses in those materials. Mechanical losses are further investigated from a microscopic point of view by comparing our experimental results with molecular dynamic simulations of the amorphous SiC structure: first we define a protocol to generate a numerical model of the amorphous film, capturing the main features of the real system; then we simulate its dynamical behavior upon deformation in order to obtain its mechanical response.
2022
Istituto di fotonica e nanotecnologie - IFN - Sede Secondaria Padova
SiC, Gravitational waves, thin films, optical coatings
File in questo prodotto:
File Dimensione Formato  
PhysRevApplied.18.044030.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/488161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact