Molecular dyes are finding more and more applications in photonics and quantum technologies, such as polaritonic optical microcavities, organic quantum batteries and single-photon emitters for quantum sensing and metrology. For all these applications, it is of crucial importance to characterize the dephasing mechanisms. In this work we use two-dimensional electronic spectroscopy (2DES) to study the temperature dependent dephasing processes in the prototypical organic dye Lumogen-F orange. We model the 2DES maps using the Bloch equations for a two-level system and obtain a dephasing time T2 = 53 fs at room temperature, which increases to T2 = 94 fs at 86 K. Furthermore, spectral diffusion processes are observed and modeled by a combination of underdamped and overdamped Brownian oscillators. Our results provide useful design parameters for advanced optoelectronic and photonic devices incorporating dye molecules.

Dephasing Processes in the Molecular Dye Lumogen-F Orange Characterized by Two-Dimensional Electronic Spectroscopy

Russo M.;Virgili T.;Cerullo G.;
2022

Abstract

Molecular dyes are finding more and more applications in photonics and quantum technologies, such as polaritonic optical microcavities, organic quantum batteries and single-photon emitters for quantum sensing and metrology. For all these applications, it is of crucial importance to characterize the dephasing mechanisms. In this work we use two-dimensional electronic spectroscopy (2DES) to study the temperature dependent dephasing processes in the prototypical organic dye Lumogen-F orange. We model the 2DES maps using the Bloch equations for a two-level system and obtain a dephasing time T2 = 53 fs at room temperature, which increases to T2 = 94 fs at 86 K. Furthermore, spectral diffusion processes are observed and modeled by a combination of underdamped and overdamped Brownian oscillators. Our results provide useful design parameters for advanced optoelectronic and photonic devices incorporating dye molecules.
2022
Istituto di fotonica e nanotecnologie - IFN - Sede Milano
decoherence
dye molecules
spectral diffusion
two-dimensional electronic spectroscopy
ultrafast spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/488762
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact