Molecular dyes are finding more and more applications in photonics and quantum technologies, such as polaritonic optical microcavities, organic quantum batteries and single-photon emitters for quantum sensing and metrology. For all these applications, it is of crucial importance to characterize the dephasing mechanisms. In this work we use two-dimensional electronic spectroscopy (2DES) to study the temperature dependent dephasing processes in the prototypical organic dye Lumogen-F orange. We model the 2DES maps using the Bloch equations for a two-level system and obtain a dephasing time T2 = 53 fs at room temperature, which increases to T2 = 94 fs at 86 K. Furthermore, spectral diffusion processes are observed and modeled by a combination of underdamped and overdamped Brownian oscillators. Our results provide useful design parameters for advanced optoelectronic and photonic devices incorporating dye molecules.
Dephasing Processes in the Molecular Dye Lumogen-F Orange Characterized by Two-Dimensional Electronic Spectroscopy
Russo M.;Virgili T.;Cerullo G.;
2022
Abstract
Molecular dyes are finding more and more applications in photonics and quantum technologies, such as polaritonic optical microcavities, organic quantum batteries and single-photon emitters for quantum sensing and metrology. For all these applications, it is of crucial importance to characterize the dephasing mechanisms. In this work we use two-dimensional electronic spectroscopy (2DES) to study the temperature dependent dephasing processes in the prototypical organic dye Lumogen-F orange. We model the 2DES maps using the Bloch equations for a two-level system and obtain a dephasing time T2 = 53 fs at room temperature, which increases to T2 = 94 fs at 86 K. Furthermore, spectral diffusion processes are observed and modeled by a combination of underdamped and overdamped Brownian oscillators. Our results provide useful design parameters for advanced optoelectronic and photonic devices incorporating dye molecules.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.