Surface phonon polaritons (SPhPs) are hybrid light–matter states in which light strongly couples to lattice vibrations inside the Reststrahlen band of polar dielectrics at mid-infrared frequencies. Antennas supporting localized surface phonon polaritons (LSPhPs) easily outperform their plasmonic counterparts operating in the visible or near-infrared in terms of field enhancement and confinement thanks to the inherently slower phonon–phonon scattering processes governing SPhP decay. In particular, LSPhP antennas have attracted considerable interest for thermal management at the nanoscale, where the emission strongly diverts from the usual far-field blackbody radiation due to the presence of evanescent waves at the surface. However, far-field measurements cannot shed light on the behavior of antennas in the near-field region. To overcome this limitation, we employ scattering-scanning near-field optical microscopy (sSNOM) to unveil the spectral near-field response of 3C-SiC antenna arrays. We present a detailed description of the behavior of the antenna resonances by comparing far-field and near-field spectra and demonstrate the existence of a mode with no net dipole moment, absent in the far-field spectra, but of importance for applications that exploit the heightened electromagnetic near fields. Furthermore, we investigate the perturbation in the antenna response induced by the presence of the AFM tip, which can be further extended toward situations where for example strong IR emitters couple to LSPhP modes.

Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas

Martini, Francesco;De Liberato, Simone;
2020

Abstract

Surface phonon polaritons (SPhPs) are hybrid light–matter states in which light strongly couples to lattice vibrations inside the Reststrahlen band of polar dielectrics at mid-infrared frequencies. Antennas supporting localized surface phonon polaritons (LSPhPs) easily outperform their plasmonic counterparts operating in the visible or near-infrared in terms of field enhancement and confinement thanks to the inherently slower phonon–phonon scattering processes governing SPhP decay. In particular, LSPhP antennas have attracted considerable interest for thermal management at the nanoscale, where the emission strongly diverts from the usual far-field blackbody radiation due to the presence of evanescent waves at the surface. However, far-field measurements cannot shed light on the behavior of antennas in the near-field region. To overcome this limitation, we employ scattering-scanning near-field optical microscopy (sSNOM) to unveil the spectral near-field response of 3C-SiC antenna arrays. We present a detailed description of the behavior of the antenna resonances by comparing far-field and near-field spectra and demonstrate the existence of a mode with no net dipole moment, absent in the far-field spectra, but of importance for applications that exploit the heightened electromagnetic near fields. Furthermore, we investigate the perturbation in the antenna response induced by the presence of the AFM tip, which can be further extended toward situations where for example strong IR emitters couple to LSPhP modes.
2020
Istituto di fotonica e nanotecnologie - IFN
localized surface phonon polaritons, near-field spectroscopy, mid-infrared, silicon carbide, dark mode
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/491081
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact