Photodynamic therapy (PDT) has been established as one of the most promising novel cancer therapies with fewer side-effects and enhanced efficacy compared to the currently available conventional treatments. However, its application has been hindered by the limitations that photosensitizers (PS) have. The combination of PS with metallic nanoparticles like platinum nanoparticles (PtNPs), can help to overcome these intrinsic drawbacks. In this work, the combination of PtNPs and the natural photosensitizer riboflavin (RF) is proposed. PtNPs are synthesized using RF (Pt@RF) as reducing and stabilizing agent in a one-step method, obtaining nanoparticles with mesoporous structure for UV triggered PDT. In view of possible future UV irradiation treatments, the degradation products of RF, ribitol (RB) and lumichrome (LC), this last being a photosensitizing byproduct, are also employed for the synthesis of porous PtNPs, obtaining Pt@LC and Pt@RB. When administered in vitro to lung cancer cells, all the samples elicit a strong decrease of cell viability and a decrease of intracellular ATP levels. The antitumoral effect of both Pt@RF and Pt@LC is triggered by UV-A irradiation. This antitumoral activity is caused by the induction of oxidative stress, shown in our study by the decrease in intracellular glutathione and increased expression of antioxidant enzymes.

One-step green synthesis of platinum mesoporous nanoparticles by riboflavin for light activated antitumoral therapy

Rossi, Francesca;Fabbri, Filippo
Writing – Review & Editing
;
Salviati, Giancarlo
Funding Acquisition
;
Bigi, Franca
2024

Abstract

Photodynamic therapy (PDT) has been established as one of the most promising novel cancer therapies with fewer side-effects and enhanced efficacy compared to the currently available conventional treatments. However, its application has been hindered by the limitations that photosensitizers (PS) have. The combination of PS with metallic nanoparticles like platinum nanoparticles (PtNPs), can help to overcome these intrinsic drawbacks. In this work, the combination of PtNPs and the natural photosensitizer riboflavin (RF) is proposed. PtNPs are synthesized using RF (Pt@RF) as reducing and stabilizing agent in a one-step method, obtaining nanoparticles with mesoporous structure for UV triggered PDT. In view of possible future UV irradiation treatments, the degradation products of RF, ribitol (RB) and lumichrome (LC), this last being a photosensitizing byproduct, are also employed for the synthesis of porous PtNPs, obtaining Pt@LC and Pt@RB. When administered in vitro to lung cancer cells, all the samples elicit a strong decrease of cell viability and a decrease of intracellular ATP levels. The antitumoral effect of both Pt@RF and Pt@LC is triggered by UV-A irradiation. This antitumoral activity is caused by the induction of oxidative stress, shown in our study by the decrease in intracellular glutathione and increased expression of antioxidant enzymes.
2024
Istituto Nanoscienze - NANO
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Platinum nanoparticles, Riboflavin, Lumichrome, Ribitol, Porous nanoparticles, Antitumoral, Photodynamic therapy
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2589965124000862-main.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/491181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact