Monoliths manufactured by Direct Ink Writing containing 60% SSZ-13 (SiO2/Al2O3 = 23) and SiO2 with 10% laponite as a binder were investigated as self-standing structured catalysts for NH3-SCR of NOx after a short (4 h) and prolonged (24 h) ion exchange with copper and then compared with pure SSZ-13 exchanged under the same conditions. The catalysts were characterized by morphological (XRD and SEM), textural (BET and pore size distribution), chemical (ICP-MS), redox (H2-TPR), and surface (NH3-TPD) analyses. The silica-based binder uniformly covered the SSZ-13 particles, and copper was uniformly distributed as well. The main features of the pure Cu-exchanged SSZ-13 zeolite were preserved in the composite monoliths with a negligible contribution of the binder fraction. NH3-SCR tests, carried out on both monolithic and powdered samples in the temperature range of 70–550 ◦C, showed that composite monoliths provided very good activity, and that the intrinsic activity of SSZ-13 was enhanced by the hierarchical structure of the composite material.

3D-Printed Monoliths Based on Cu-Exchanged SSZ-13 as Catalyst for SCR of NOx

Cepollaro E. M.;Cimino S.;Lisi L.
2024

Abstract

Monoliths manufactured by Direct Ink Writing containing 60% SSZ-13 (SiO2/Al2O3 = 23) and SiO2 with 10% laponite as a binder were investigated as self-standing structured catalysts for NH3-SCR of NOx after a short (4 h) and prolonged (24 h) ion exchange with copper and then compared with pure SSZ-13 exchanged under the same conditions. The catalysts were characterized by morphological (XRD and SEM), textural (BET and pore size distribution), chemical (ICP-MS), redox (H2-TPR), and surface (NH3-TPD) analyses. The silica-based binder uniformly covered the SSZ-13 particles, and copper was uniformly distributed as well. The main features of the pure Cu-exchanged SSZ-13 zeolite were preserved in the composite monoliths with a negligible contribution of the binder fraction. NH3-SCR tests, carried out on both monolithic and powdered samples in the temperature range of 70–550 ◦C, showed that composite monoliths provided very good activity, and that the intrinsic activity of SSZ-13 was enhanced by the hierarchical structure of the composite material.
2024
Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - STEMS - Sede Secondaria Napoli
structured catalysts, additive manufacturing, SSZ-13, deNOx
File in questo prodotto:
File Dimensione Formato  
catalysts-14-00085-v publ.pdf

accesso aperto

Descrizione: reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/491224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact