Thermal transport and quantum thermodynamics at the nanoscale are nowadays garnering increasing attention, in particular, in the context of quantum technologies. Experiments relevant for quantum technology are expected to be performed in the nonlinear regime. In this work, we build on previous results derived in the linear response regime for the performance of an Aharonov–Bohm (AB) interferometer operated as a heat engine. In the nonlinear regime, we demonstrate the tunability, large efficiency, and thermopower that this mesoscopic quantum machine can achieve, confirming the exciting perspectives that this AB ring offers for developing efficient thermal machines in the fully quantum regime.
Nonlinear regime for enhanced performance of an Aharonov–Bohm heat engine
Giazotto, Francesco
2021
Abstract
Thermal transport and quantum thermodynamics at the nanoscale are nowadays garnering increasing attention, in particular, in the context of quantum technologies. Experiments relevant for quantum technology are expected to be performed in the nonlinear regime. In this work, we build on previous results derived in the linear response regime for the performance of an Aharonov–Bohm (AB) interferometer operated as a heat engine. In the nonlinear regime, we demonstrate the tunability, large efficiency, and thermopower that this mesoscopic quantum machine can achieve, confirming the exciting perspectives that this AB ring offers for developing efficient thermal machines in the fully quantum regime.File | Dimensione | Formato | |
---|---|---|---|
046801_1_online.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.18 MB
Formato
Adobe PDF
|
4.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.