The properties of semiflexible active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain subject to tangential active forces, and the interaction with the fluid is described by the Brownian multiparticle collision dynamics approach. Both phantom polymers and chains with excluded- volume interactions are considered. The size and shape strongly depend on the relative ratio of the persistence length to the ring length as well as on the active force. The long-time dynamics is characterized by a rotational motion whose frequency increases with the active force.

Excluded volume effects on active ring polymers

A. Lamura
2024

Abstract

The properties of semiflexible active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain subject to tangential active forces, and the interaction with the fluid is described by the Brownian multiparticle collision dynamics approach. Both phantom polymers and chains with excluded- volume interactions are considered. The size and shape strongly depend on the relative ratio of the persistence length to the ring length as well as on the active force. The long-time dynamics is characterized by a rotational motion whose frequency increases with the active force.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Bari
matematica applicata
File in questo prodotto:
File Dimensione Formato  
Lamura_ISODAYS2024.docx

solo utenti autorizzati

Licenza: Dominio pubblico
Dimensione 14.88 kB
Formato Microsoft Word XML
14.88 kB Microsoft Word XML   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/491582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact