A new gene selection method for analyzing microarray experiments pertaining to two classes of tissues and for determining relevant genes characterizing differences between the two classes is proposed. The new technique is based on Switching Neural Networks (SNN), learning machines that assign a relevance value to each input variable, and adopts Recursive Feature Addition (RFA) for performing gene selection. The performances of SNN-RFA are evaluated by considering its application on two real and two artificial gene expression datasets generated according to a proper mathematical model that possesses biological and statistical plausibility. Comparisons with other two widely used gene selection methods are also shown.

Evaluating Switching Neural Networks for gene selection

M Muselli
2007

Abstract

A new gene selection method for analyzing microarray experiments pertaining to two classes of tissues and for determining relevant genes characterizing differences between the two classes is proposed. The new technique is based on Switching Neural Networks (SNN), learning machines that assign a relevance value to each input variable, and adopts Recursive Feature Addition (RFA) for performing gene selection. The performances of SNN-RFA are evaluated by considering its application on two real and two artificial gene expression datasets generated according to a proper mathematical model that possesses biological and statistical plausibility. Comparisons with other two widely used gene selection methods are also shown.
2007
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/49247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact