The Normalized Wavelet Cross-Correlation Function (NWCCF) was used to study correlations between the series of extreme events in self-potential data and earthquakes, both modelled as stochastic point processes. This method gives objective results, robust to the presence of nonstationarities that often affect observational time series. Furthermore, the NWCCF identifies the timescales involved in the cross-correlated behaviour between two point processes. In particular, we analyzed the cross-correlation between the sequence of extreme events in self-potential data measured at the monitoring station Tito, located in a seismic area of Southern Italy, and the series of earthquakes which occurred in the same area during 2001. To evaluate the influence of rain on the dynamics of geoelectrical variations, we applied the same approach between the selected extreme values and the rain data. We find that the anomalous geoelectrical values seem to cross-correlate with the rain at short and intermediate timescales (tau < 500 h), while they significantly cross-correlate only with earthquakes (M greater than or equal to 2.5) at long timescales (tau > 500 h).

Investigating correlations between earthquakes and extreme events in self-potential data recorded in a seismic area of Southestern Appennine Chain (Italy)

Telesca L;Balasco M;Lapenna V
2004

Abstract

The Normalized Wavelet Cross-Correlation Function (NWCCF) was used to study correlations between the series of extreme events in self-potential data and earthquakes, both modelled as stochastic point processes. This method gives objective results, robust to the presence of nonstationarities that often affect observational time series. Furthermore, the NWCCF identifies the timescales involved in the cross-correlated behaviour between two point processes. In particular, we analyzed the cross-correlation between the sequence of extreme events in self-potential data measured at the monitoring station Tito, located in a seismic area of Southern Italy, and the series of earthquakes which occurred in the same area during 2001. To evaluate the influence of rain on the dynamics of geoelectrical variations, we applied the same approach between the selected extreme values and the rain data. We find that the anomalous geoelectrical values seem to cross-correlate with the rain at short and intermediate timescales (tau < 500 h), while they significantly cross-correlate only with earthquakes (M greater than or equal to 2.5) at long timescales (tau > 500 h).
2004
Istituto di Metodologie per l'Analisi Ambientale - IMAA
self-potentials
extreme events
earthquakes
cross-correlation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/49267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact