Initial stages of the gel-to-kaolinite transformation were Studied using HRTEM. Spherical aggregates of kaolinite crystals were produced during the synthesis of kaolinite by hydrothermal treatment of Si-Al amorphous gels. Prior to sphere formation, gels transform into pseudospherical domains that have a Si/Al ratio of one and display no SAED pattern. The spherical particles consist of radially arranged sectors of stacks of planar crystallites. Crystals display nonbasal spacings of 4.5, 4.2 and 3.8 Angstrom and a basal spacing of 7.1 Angstrom, the c* axis following the radius of the sphere. Interpretation of the 3D nanostructure of the spheres is difficult. The c* axis exhibits a radial disposition, but the relative orientation of the a* and b* axes in neighbouring crystallites may produce bent layers or incoherent contacts. In addition, curved layers with a d spacing of 7.4 Angstrom may be attributed to halloysite layers collapsed under microscopy conditions. The disappearance of the spheres during the hydrothermal treatment is probably due to preferential dissolution of either high-stress areas near bent layers or non-crystalline material filling crystal boundaries. Dissolution leads to sphere disaggregation and allows the component columnar crystals to continue to grow. Observations of the gel matrix suggest that under our experimental conditions kaolinite crystallizes via an in situ transformation of the gel.

In situ transformation of amorphous gels into spherical aggregates of kaolinite: A HRTEM study

Fiore S;
2004

Abstract

Initial stages of the gel-to-kaolinite transformation were Studied using HRTEM. Spherical aggregates of kaolinite crystals were produced during the synthesis of kaolinite by hydrothermal treatment of Si-Al amorphous gels. Prior to sphere formation, gels transform into pseudospherical domains that have a Si/Al ratio of one and display no SAED pattern. The spherical particles consist of radially arranged sectors of stacks of planar crystallites. Crystals display nonbasal spacings of 4.5, 4.2 and 3.8 Angstrom and a basal spacing of 7.1 Angstrom, the c* axis following the radius of the sphere. Interpretation of the 3D nanostructure of the spheres is difficult. The c* axis exhibits a radial disposition, but the relative orientation of the a* and b* axes in neighbouring crystallites may produce bent layers or incoherent contacts. In addition, curved layers with a d spacing of 7.4 Angstrom may be attributed to halloysite layers collapsed under microscopy conditions. The disappearance of the spheres during the hydrothermal treatment is probably due to preferential dissolution of either high-stress areas near bent layers or non-crystalline material filling crystal boundaries. Dissolution leads to sphere disaggregation and allows the component columnar crystals to continue to grow. Observations of the gel matrix suggest that under our experimental conditions kaolinite crystallizes via an in situ transformation of the gel.
2004
Istituto di Metodologie per l'Analisi Ambientale - IMAA
kaolinite
TEM
spherical aggregates
synthesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/49270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact