This study aims to ascertain how well remote sensing data can characterize fuel type at different spatial scales in fragmented ecosystems. For this purpose, multisensor and multiscale remote sensing data such as hyperspectral Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) and Landsat Thematic Mapper (TM) data acquired in 1998 were analysed for a test area in southern Italy characterized by mixed vegetation covers and complex topography. Fieldwork fuel type recognition, performed at the same time as remote sensing data acquisitions, was used to assess the results obtained for the considered test areas. Results from preliminary analysis showed that the use of unmixing techniques allows an increase in accuracy of around 7% compared with the accuracy level obtained by applying a widely used classification algorithm.

Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data

Lasaponara R;Lanorte A;
2006

Abstract

This study aims to ascertain how well remote sensing data can characterize fuel type at different spatial scales in fragmented ecosystems. For this purpose, multisensor and multiscale remote sensing data such as hyperspectral Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) and Landsat Thematic Mapper (TM) data acquired in 1998 were analysed for a test area in southern Italy characterized by mixed vegetation covers and complex topography. Fieldwork fuel type recognition, performed at the same time as remote sensing data acquisitions, was used to assess the results obtained for the considered test areas. Results from preliminary analysis showed that the use of unmixing techniques allows an increase in accuracy of around 7% compared with the accuracy level obtained by applying a widely used classification algorithm.
2006
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Multispectral
multisensor
vegetation
classifica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/49306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact