Structural health monitoring (SHM) aims to improve knowledge of the safety and maintainability of civil structures. The usage of recording systems exploiting wireless communication technology is particularly suitable for SHM, especially for rapid response following earthquakes. In this study, both of these issues are combined, and we report on the application of seismic interferometry to SHM using a dataset of seven earthquakes collected using a novel wireless system of accelerometers during the L'Aquila, Italy, seismic sequence in 2009. We show that interferometric analysis allows the estimation of the shear- wave velocity of seismic phases propagating throughout a structure, and, most important for SHM purposes, allows the monitoring of the velocity variations during the aftershock sequence. Moreover, innovatively we apply the S transform to the building response functions retrieved by interferometry to estimate the fundamental resonance frequency and the quality factor Q.

Interferometric Analysis of Strong Ground Motion for Structural Health Monitoring: The Example of the L'Aquila, Italy, Seismic Sequence of 2009

Gallipoli MR;
2011

Abstract

Structural health monitoring (SHM) aims to improve knowledge of the safety and maintainability of civil structures. The usage of recording systems exploiting wireless communication technology is particularly suitable for SHM, especially for rapid response following earthquakes. In this study, both of these issues are combined, and we report on the application of seismic interferometry to SHM using a dataset of seven earthquakes collected using a novel wireless system of accelerometers during the L'Aquila, Italy, seismic sequence in 2009. We show that interferometric analysis allows the estimation of the shear- wave velocity of seismic phases propagating throughout a structure, and, most important for SHM purposes, allows the monitoring of the velocity variations during the aftershock sequence. Moreover, innovatively we apply the S transform to the building response functions retrieved by interferometry to estimate the fundamental resonance frequency and the quality factor Q.
2011
Istituto di Metodologie per l'Analisi Ambientale - IMAA
EARTHQUAKE DAMAGE DETECTION; M-W 6.3; S-TRANSFORM; DYNAMIC PARAMETERS; WAVE-PROPAGATION;
MI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/49323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact