This volume, intended for educational researchers and practitioners, discusses the pivotal role of prerequisite relations between educational contents in shaping learning paths and offers tools for exploring and analyzing teaching materials. It demonstrates how uncovering the structured representation of educational text content fosters its dynamic and adaptive navigation, all while tackling the complexities of identifying prerequisite relations within such texts. Through a multidisciplinary methodology integrating corpus annotation, knowledge modelling, and deep textual analysis, the volume illustrates the interplay between form and content in textual materials, underscoring the importance of employing level-appropriate language for fostering effective learning. The efficacy of this approach is demonstrated through case studies on content modelling and textbook exploration that illustrate its potential to enhance teaching and learning across diverse domains.

Unlocking Knowledge in the Digital Age. A Guide to Modelling Propaedeutic Relations in Educational Texts

Alzetta Chiara
2024

Abstract

This volume, intended for educational researchers and practitioners, discusses the pivotal role of prerequisite relations between educational contents in shaping learning paths and offers tools for exploring and analyzing teaching materials. It demonstrates how uncovering the structured representation of educational text content fosters its dynamic and adaptive navigation, all while tackling the complexities of identifying prerequisite relations within such texts. Through a multidisciplinary methodology integrating corpus annotation, knowledge modelling, and deep textual analysis, the volume illustrates the interplay between form and content in textual materials, underscoring the importance of employing level-appropriate language for fostering effective learning. The efficacy of this approach is demonstrated through case studies on content modelling and textbook exploration that illustrate its potential to enhance teaching and learning across diverse domains.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Alzetta Chiara en
dc.collection.id.s ecce2d42-ecc8-45a0-b8e8-9b15f5a4488d *
dc.collection.name 03.01 Monografia o trattato scientifico *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/12/03 16:19:03 -
dc.date.available 2024/12/03 16:19:03 -
dc.date.firstsubmission 2024/08/27 15:26:14 *
dc.date.issued 2024 -
dc.date.submission 2025/03/03 18:33:41 *
dc.description.abstracteng This volume, intended for educational researchers and practitioners, discusses the pivotal role of prerequisite relations between educational contents in shaping learning paths and offers tools for exploring and analyzing teaching materials. It demonstrates how uncovering the structured representation of educational text content fosters its dynamic and adaptive navigation, all while tackling the complexities of identifying prerequisite relations within such texts. Through a multidisciplinary methodology integrating corpus annotation, knowledge modelling, and deep textual analysis, the volume illustrates the interplay between form and content in textual materials, underscoring the importance of employing level-appropriate language for fostering effective learning. The efficacy of this approach is demonstrated through case studies on content modelling and textbook exploration that illustrate its potential to enhance teaching and learning across diverse domains. -
dc.description.allpeople Alzetta, Chiara -
dc.description.allpeopleoriginal Alzetta Chiara en
dc.description.fulltext partially_open en
dc.description.numberofauthors 1 -
dc.identifier.isbn 9788846769237 en
dc.identifier.source manual *
dc.identifier.uri https://hdl.handle.net/20.500.14243/493657 -
dc.language.iso eng en
dc.publisher.country ITA en
dc.publisher.name Edizioni ETS en
dc.publisher.place Pisa en
dc.subject.keywordseng Prerequisite relations -
dc.subject.keywordseng Annotation -
dc.subject.keywordseng Modelling Framework -
dc.subject.keywordseng Educational application -
dc.subject.singlekeyword Prerequisite relations *
dc.subject.singlekeyword Annotation *
dc.subject.singlekeyword Modelling Framework *
dc.subject.singlekeyword Educational application *
dc.title Unlocking Knowledge in the Digital Age. A Guide to Modelling Propaedeutic Relations in Educational Texts en
dc.type.driver info:eu-repo/semantics/book -
dc.type.full 03 Libro::03.01 Monografia o trattato scientifico it
dc.type.miur 276 -
iris.mediafilter.data 2025/04/04 04:09:19 *
iris.orcid.lastModifiedDate 2025/03/03 18:39:29 *
iris.orcid.lastModifiedMillisecond 1741023569733 *
iris.sitodocente.maxattempts 1 -
Appare nelle tipologie: 03.01 Monografia o trattato scientifico
File in questo prodotto:
File Dimensione Formato  
anteprima.pdf

accesso aperto

Descrizione: Anteprima Monografia
Tipologia: Abstract
Licenza: Creative commons
Dimensione 727.93 kB
Formato Adobe PDF
727.93 kB Adobe PDF Visualizza/Apri
VoR-Unlocking_Knowledge_in_the_Digital_Age.pdf

solo utenti autorizzati

Descrizione: Version-of-Records-PUBLISHED
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/493657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact