Statistical physics has proved essential to analyze multiagent environments. Motivated by the empirical observation of various nonequilibrium features in Barro Colorado and other ecological systems, we analyze a plant-species abundance model of neutral competition, presenting analytical evidence of scale-invariant plant clusters and nontrivial emergent modular correlations. Such first theoretical confirmation of a scale-invariant region, based on percolation processes, reproduces the key features in natural rainforest ecosystems and can confer the most stable equilibrium for ecosystems with vast biodiversity.
Emergent spatial patterns of coexistence in species-rich plant communities
Gili T.;Caldarelli G.
2021
Abstract
Statistical physics has proved essential to analyze multiagent environments. Motivated by the empirical observation of various nonequilibrium features in Barro Colorado and other ecological systems, we analyze a plant-species abundance model of neutral competition, presenting analytical evidence of scale-invariant plant clusters and nontrivial emergent modular correlations. Such first theoretical confirmation of a scale-invariant region, based on percolation processes, reproduces the key features in natural rainforest ecosystems and can confer the most stable equilibrium for ecosystems with vast biodiversity.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PhysRevE.104.034305.pdf
solo utenti autorizzati
Descrizione: Emergent spatial patterns of coexistence in species-rich plant communities
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.89 MB
Formato
Adobe PDF
|
1.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.