Digestates from low-tech digesters need to be post-treated to ensure their safe agricultural reuse. This study evaluated, for the first time, vermifiltration as a post-treatment for the digestate from a low-tech digester implemented in a small-scale farm, treating cattle manure and cheese whey under psychrophilic conditions. Vermifiltration performance was monitored in terms of solids, organic matter, nutrients, and pathogens removal efficiency. In addition, the growth of earthworms (Eisenia foetida) and their role in the process was evaluated. Finally, the vermicompost and the effluent of the vermifilter were characterized in order to assess their potential reuse in agriculture. Vermifilters showed high removal efficiency of chemical oxygen demand (55-90%), total solids (60-80%), ammonium nitrogen (83-97%), and phosphate-P (28-49%). Earthworms effectively grew and reproduced on digestate (i.e. earthworms number increased by 183%), enhancing the vermifiltration performance, while reducing clogging and odour-related issues. Both the vermicompost and effluent produced complied with legislation limits established for soil improvers and wastewater for fertigation, respectively. Indeed, there was an absence of pathogens and non-detectable heavy metals concentrations. Vermifiltration may be thus considered a suitable post-treatment option for the digestate from low-tech digesters, allowing for its safe agricultural reuse and boosting the circular bioeconomy in small-scale farms.
Vermifiltration as a green solution to promote digestate reuse in agriculture in small-scale farms
Cucina, MirkoPrimo
;
2024
Abstract
Digestates from low-tech digesters need to be post-treated to ensure their safe agricultural reuse. This study evaluated, for the first time, vermifiltration as a post-treatment for the digestate from a low-tech digester implemented in a small-scale farm, treating cattle manure and cheese whey under psychrophilic conditions. Vermifiltration performance was monitored in terms of solids, organic matter, nutrients, and pathogens removal efficiency. In addition, the growth of earthworms (Eisenia foetida) and their role in the process was evaluated. Finally, the vermicompost and the effluent of the vermifilter were characterized in order to assess their potential reuse in agriculture. Vermifilters showed high removal efficiency of chemical oxygen demand (55-90%), total solids (60-80%), ammonium nitrogen (83-97%), and phosphate-P (28-49%). Earthworms effectively grew and reproduced on digestate (i.e. earthworms number increased by 183%), enhancing the vermifiltration performance, while reducing clogging and odour-related issues. Both the vermicompost and effluent produced complied with legislation limits established for soil improvers and wastewater for fertigation, respectively. Indeed, there was an absence of pathogens and non-detectable heavy metals concentrations. Vermifiltration may be thus considered a suitable post-treatment option for the digestate from low-tech digesters, allowing for its safe agricultural reuse and boosting the circular bioeconomy in small-scale farms.File | Dimensione | Formato | |
---|---|---|---|
JEMA-2024-Cucina.pdf
solo utenti autorizzati
Descrizione: Vermifiltration as a green solution to promote digestate reuse in agriculture in small-scale farms
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.