Light can be strongly confined in subwavelength spatial regions through the interaction with plasmons, the collective electronic modes appearing in metals and semiconductors. This confinement, which is particularly important in the terahertz spectral region, amplifies light-matter interaction and provides a powerful mechanism for efficiently generating nonlinear optical phenomena. These effects are particularly relevant in graphene and topological insulators, where massless Dirac fermions show a naturally nonlinear optical behavior in the terahertz range. The strong interaction scenario has been considered so far from the point of view of light. In this Letter, we investigate instead the effect of strong interaction on the plasmon itself. In particular, we will show that Dirac plasmons in Bi2Se3 topological insulator are strongly renormalized when excited by high-intensity terahertz radiation by displaying a huge red-shift down to 60% of its characteristic frequency. This opens the road towards tunable terahertz nonlinear optical devices based on topological insulators.
Terahertz Tuning of Dirac Plasmons in Bi2Se3 topological insulator
Piccirilli F.;Di Gaspare A.;Lupi S.
2020
Abstract
Light can be strongly confined in subwavelength spatial regions through the interaction with plasmons, the collective electronic modes appearing in metals and semiconductors. This confinement, which is particularly important in the terahertz spectral region, amplifies light-matter interaction and provides a powerful mechanism for efficiently generating nonlinear optical phenomena. These effects are particularly relevant in graphene and topological insulators, where massless Dirac fermions show a naturally nonlinear optical behavior in the terahertz range. The strong interaction scenario has been considered so far from the point of view of light. In this Letter, we investigate instead the effect of strong interaction on the plasmon itself. In particular, we will show that Dirac plasmons in Bi2Se3 topological insulator are strongly renormalized when excited by high-intensity terahertz radiation by displaying a huge red-shift down to 60% of its characteristic frequency. This opens the road towards tunable terahertz nonlinear optical devices based on topological insulators.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.124.226403.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
855.6 kB
Formato
Adobe PDF
|
855.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1910.11233v1.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
4.76 MB
Formato
Adobe PDF
|
4.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.