The objective of this study is to investigate the upgrading of low-quality nitrogen-diluted syngas derived from biomass air gasification processes into a methane-rich gas stream. Both the thermodynamic and the kinetic aspects are addressed in the paper. Using the Aspen Plus software, a thermodynamic analysis was conducted; then, different plant designs are simulated and compared, including reactor sizing and performance. The results demonstrate that the upgrading of diluted syngas poses challenges which limit its application to small-scale decentralized systems. It was found that a system comprising of four adiabatic fixed-bed reactors, inter-cooling, and efficient water removal achieves a favorable balance between performance and cost. Operating the system at a pressure of 5 bar is deemed adequate as it reduces the required catalyst mass and prevents solid carbon deposition. Notably, this configuration achieved good results, including a 99.4 % CO conversion, 89.3 % CO2 conversion, and 95.6 % CH4 yield. The final methane molar content reached 26.4 %, with a calorific value of 8.62 MJ/Nm3(STP).

Methanation of syngas from biomass gasification: Small-scale plant design in Aspen Plus

Ruoppolo G.;Urciuolo M.;Brachi P.
2024

Abstract

The objective of this study is to investigate the upgrading of low-quality nitrogen-diluted syngas derived from biomass air gasification processes into a methane-rich gas stream. Both the thermodynamic and the kinetic aspects are addressed in the paper. Using the Aspen Plus software, a thermodynamic analysis was conducted; then, different plant designs are simulated and compared, including reactor sizing and performance. The results demonstrate that the upgrading of diluted syngas poses challenges which limit its application to small-scale decentralized systems. It was found that a system comprising of four adiabatic fixed-bed reactors, inter-cooling, and efficient water removal achieves a favorable balance between performance and cost. Operating the system at a pressure of 5 bar is deemed adequate as it reduces the required catalyst mass and prevents solid carbon deposition. Notably, this configuration achieved good results, including a 99.4 % CO conversion, 89.3 % CO2 conversion, and 95.6 % CH4 yield. The final methane molar content reached 26.4 %, with a calorific value of 8.62 MJ/Nm3(STP).
2024
Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - STEMS - Sede Secondaria Napoli
Aspen Plus
Nitrogen dilution
Plant design
Sensitivity
Syngas methanation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1359431124005696-main.pdf

accesso aperto

Descrizione: reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.43 MB
Formato Adobe PDF
4.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/494624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact