Metal-mediated base pairing of DNA has been a topic of extensive research spanning over more than four decades. Precise positioning of a single metal ion by predetermining the DNA sequence, as well as improved conductivity offered by the ions, make these structures interesting candidates in the context of using DNA in nanotechnology. Here, we report the formation and characterization of conjugates of long (kilo bases) homoguanine DNA strands with silver ions. We demonstrate using atomic force microscopy (AFM) and scanning tunneling microscope (STM) that binding of silver ions leads to folding of homoguanine DNA strands in a “hairpin” fashion to yield double-helical, left-handed molecules composed of G-G base pairs each stabilized by a silver ion. Further folding of the DNA–silver conjugate yields linear molecules in which the two halves of the double helix are twisted one against the other in a right-handed fashion. Quantum mechanical calculations on smaller molecular models support the helical twist directions obtained by the high resolution STM analysis. These long guanine-based nanostructures bearing a chain of silver ions have not been synthesized and studied before and are likely to possess conductive properties that will make them attractive candidates for nanoelectronics.

Ag+-Mediated Folding of Long Polyguanine Strands to Double and Quadruple Helixes

Improta R.;
2024

Abstract

Metal-mediated base pairing of DNA has been a topic of extensive research spanning over more than four decades. Precise positioning of a single metal ion by predetermining the DNA sequence, as well as improved conductivity offered by the ions, make these structures interesting candidates in the context of using DNA in nanotechnology. Here, we report the formation and characterization of conjugates of long (kilo bases) homoguanine DNA strands with silver ions. We demonstrate using atomic force microscopy (AFM) and scanning tunneling microscope (STM) that binding of silver ions leads to folding of homoguanine DNA strands in a “hairpin” fashion to yield double-helical, left-handed molecules composed of G-G base pairs each stabilized by a silver ion. Further folding of the DNA–silver conjugate yields linear molecules in which the two halves of the double helix are twisted one against the other in a right-handed fashion. Quantum mechanical calculations on smaller molecular models support the helical twist directions obtained by the high resolution STM analysis. These long guanine-based nanostructures bearing a chain of silver ions have not been synthesized and studied before and are likely to possess conductive properties that will make them attractive candidates for nanoelectronics.
2024
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
AFM
chirality
homoguanine DNA
silver-mediated base pairing
STM
File in questo prodotto:
File Dimensione Formato  
nanomaterials-14-00663.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/496741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact