Despite their low prevalence, brain tumors are among the most lethal cancers. They are extremely difficult to diagnose, monitor and treat. Conventional anti-cancer strategies such as radio- and chemotherapy have largely failed, and to date, the development of even a single effective therapeutic strategy against central nervous system (CNS) tumors has remained elusive. There are several factors responsible for this. Brain cancers are a heterogeneous group of diseases with variable origins, biochemical properties and degrees of invasiveness. High-grade gliomas are amongst the most metastatic and invasive cancers, which is another reason for therapeutic failure in their case. Moreover, crossing the blood brain and the blood brain tumor barriers has been a significant hindrance in the development of efficient CNS therapeutics. Cancer nanomedicine, which encompasses the application of nanotechnology for diagnosis, monitoring and therapy of cancers, is a rapidly evolving field of translational medicine. Nanoformulations, because of their extreme versatility and manipulative potential, are emerging candidates for tumor targeting, penetration and treatment in the brain. Moreover, suitable nanocarriers can be commissioned for theranostics, a combinatorial personalized approach for simultaneous imaging and therapy. This review first details the recent advances in novel bioengineering techniques that provide promising avenues for circumventing the hurdles of delivering the diagnostic/therapeutic agent to the CNS. The authors then describe in detail the tremendous potential of utilizing nanotechnology, particularly nano-theranostics for brain cancer imaging and therapy, and outline the different categories of recently developed next-generation smart nanoformulations that have exceptional potential for making a breakthrough in clinical neuro-oncology therapeutics.

Smart Nanoformulations for Brain Cancer Theranostics: Challenges and Promises

Fagoonee S.;
2022

Abstract

Despite their low prevalence, brain tumors are among the most lethal cancers. They are extremely difficult to diagnose, monitor and treat. Conventional anti-cancer strategies such as radio- and chemotherapy have largely failed, and to date, the development of even a single effective therapeutic strategy against central nervous system (CNS) tumors has remained elusive. There are several factors responsible for this. Brain cancers are a heterogeneous group of diseases with variable origins, biochemical properties and degrees of invasiveness. High-grade gliomas are amongst the most metastatic and invasive cancers, which is another reason for therapeutic failure in their case. Moreover, crossing the blood brain and the blood brain tumor barriers has been a significant hindrance in the development of efficient CNS therapeutics. Cancer nanomedicine, which encompasses the application of nanotechnology for diagnosis, monitoring and therapy of cancers, is a rapidly evolving field of translational medicine. Nanoformulations, because of their extreme versatility and manipulative potential, are emerging candidates for tumor targeting, penetration and treatment in the brain. Moreover, suitable nanocarriers can be commissioned for theranostics, a combinatorial personalized approach for simultaneous imaging and therapy. This review first details the recent advances in novel bioengineering techniques that provide promising avenues for circumventing the hurdles of delivering the diagnostic/therapeutic agent to the CNS. The authors then describe in detail the tremendous potential of utilizing nanotechnology, particularly nano-theranostics for brain cancer imaging and therapy, and outline the different categories of recently developed next-generation smart nanoformulations that have exceptional potential for making a breakthrough in clinical neuro-oncology therapeutics.
2022
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
bioengineering
electro-magnetic nanoparticles
exosomes
focused ultrasound
gliomas
theranostics
File in questo prodotto:
File Dimensione Formato  
cancers-14-05389.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/496821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact