We here study the effect that a lowering of the pH has on the excited state processes of cytidine and a cytidine/cytidine pair in solution, by integrating time-dependent density functional theory and CASSCF/CASPT2 calculations, and including solvent by a mixed discrete/continuum model. Our calculations reproduce the effect of protonation at N3 on the steady-state infrared and absorption spectra of a protonated cytidine (CH+), and predict that an easily accessible non-radiative deactivation route exists for the spectroscopic state, explaining its sub-ps lifetime. Indeed, an extremely small energy barrier separates the minimum of the lowest energy bright state from a crossing region with the ground electronic state, reached by out-of-plane motion of the hydrogen substituents of the CC double bond, the so-called ethylenic conical intersection typical of cytidine and other pyrimidine bases. This deactivation route is operative for the two bases forming an hemiprotonated cytidine base pair, [CH·C]+, the building blocks of I-motif secondary structures, whereas interbase processes play a minor role. N3 protonation disfavors instead the nπ* transitions, associated with the long-living components of cytidine photoactivated dynamics.
The photophysics of protonated cytidine and hemiprotonated cytidine base pair: A computational study
Improta R.
2024
Abstract
We here study the effect that a lowering of the pH has on the excited state processes of cytidine and a cytidine/cytidine pair in solution, by integrating time-dependent density functional theory and CASSCF/CASPT2 calculations, and including solvent by a mixed discrete/continuum model. Our calculations reproduce the effect of protonation at N3 on the steady-state infrared and absorption spectra of a protonated cytidine (CH+), and predict that an easily accessible non-radiative deactivation route exists for the spectroscopic state, explaining its sub-ps lifetime. Indeed, an extremely small energy barrier separates the minimum of the lowest energy bright state from a crossing region with the ground electronic state, reached by out-of-plane motion of the hydrogen substituents of the CC double bond, the so-called ethylenic conical intersection typical of cytidine and other pyrimidine bases. This deactivation route is operative for the two bases forming an hemiprotonated cytidine base pair, [CH·C]+, the building blocks of I-motif secondary structures, whereas interbase processes play a minor role. N3 protonation disfavors instead the nπ* transitions, associated with the long-living components of cytidine photoactivated dynamics.| File | Dimensione | Formato | |
|---|---|---|---|
|
Photochem Photobiology - 2023 - Martinez‐Fernandez - The photophysics of protonated cytidine and hemiprotonated cytidine.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


