: In patients with colorectal liver metastasis (CRLMs) unsuitable for surgery, oncological treatments, such as chemotherapy and targeted agents, can be performed. Cross-sectional imaging [computed tomography (CT), magnetic resonance imaging (MRI), 18-fluorodexoyglucose positron emission tomography with CT/MRI] evaluates the response of CRLMs to therapy, using post-treatment lesion shrinkage as a qualitative imaging parameter. This point is critical because the risk of toxicity induced by oncological treatments is not always balanced by an effective response to them. Consequently, there is a pressing need to define biomarkers that can predict treatment responses and estimate the likelihood of drug resistance in individual patients. Advanced quantitative imaging (diffusion-weighted imaging, perfusion imaging, molecular imaging) allows the in vivo evaluation of specific biological tissue features described as quantitative parameters. Furthermore, radiomics can represent large amounts of numerical and statistical information buried inside cross-sectional images as quantitative parameters. As a result, parametric analysis (PA) translates the numerical data contained in the voxels of each image into quantitative parameters representative of peculiar neoplastic features such as perfusion, structural heterogeneity, cellularity, oxygenation, and glucose consumption. PA could be a potentially useful imaging marker for predicting CRLMs treatment response. This review describes the role of PA applied to cross-sectional imaging in predicting the response to oncological therapies in patients with CRLMs.

Role of advanced imaging techniques in the evaluation of oncological therapies in patients with colorectal liver metastases

Prinster, Anna;Pizzuti, Laura Micol;Brunetti, Arturo;Mainenti, Pier Paolo
2023

Abstract

: In patients with colorectal liver metastasis (CRLMs) unsuitable for surgery, oncological treatments, such as chemotherapy and targeted agents, can be performed. Cross-sectional imaging [computed tomography (CT), magnetic resonance imaging (MRI), 18-fluorodexoyglucose positron emission tomography with CT/MRI] evaluates the response of CRLMs to therapy, using post-treatment lesion shrinkage as a qualitative imaging parameter. This point is critical because the risk of toxicity induced by oncological treatments is not always balanced by an effective response to them. Consequently, there is a pressing need to define biomarkers that can predict treatment responses and estimate the likelihood of drug resistance in individual patients. Advanced quantitative imaging (diffusion-weighted imaging, perfusion imaging, molecular imaging) allows the in vivo evaluation of specific biological tissue features described as quantitative parameters. Furthermore, radiomics can represent large amounts of numerical and statistical information buried inside cross-sectional images as quantitative parameters. As a result, parametric analysis (PA) translates the numerical data contained in the voxels of each image into quantitative parameters representative of peculiar neoplastic features such as perfusion, structural heterogeneity, cellularity, oxygenation, and glucose consumption. PA could be a potentially useful imaging marker for predicting CRLMs treatment response. This review describes the role of PA applied to cross-sectional imaging in predicting the response to oncological therapies in patients with CRLMs.
2023
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Colorectal cancer metastases
Computed tomography
Magnetic resonance imaging
Parametric imaging
Positron emission tomography
Prediction response
File in questo prodotto:
File Dimensione Formato  
Caruso_2023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/497642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact