ZnO is a well-known semiconducting material showing a wide bandgap and an n-type intrinsic behavior of high interest in applications such as transparent electronics, piezoelectricity, optoelectronics, and photovoltaics. This semiconductor becomes even more attractive when doped with a few atomic percent of a transition metal. Indeed, e.g., the introduction of substitutional Co atoms in ZnO (ZCO) induces the appearance of room temperature ferromagnetism (RT-FM) and magneto-optical effects, making this material one of the most important representatives of so-called dilute magnetic semiconductors (DMSs). In the present review, we discuss the magnetic and magneto- optical properties of Co-doped ZnO thin films by considering also the significant improvements in the properties induced by post-growth irradiation with atomic hydrogen. We also show how all of these properties can be accounted for by a theoretical model based on the formation of Co-VO (oxygen vacancy) complexes and the concurrent presence of shallow donor defects, thus giving a sound support to this model to explain the RT-FM in ZCO DMSs.
Ferromagnetic Behavior and Magneto-Optical Properties of Semiconducting Co-Doped ZnO
A. Di Trolio
Primo
;Alberto M. Testa;Aldo Amore BonapastaUltimo
2022
Abstract
ZnO is a well-known semiconducting material showing a wide bandgap and an n-type intrinsic behavior of high interest in applications such as transparent electronics, piezoelectricity, optoelectronics, and photovoltaics. This semiconductor becomes even more attractive when doped with a few atomic percent of a transition metal. Indeed, e.g., the introduction of substitutional Co atoms in ZnO (ZCO) induces the appearance of room temperature ferromagnetism (RT-FM) and magneto-optical effects, making this material one of the most important representatives of so-called dilute magnetic semiconductors (DMSs). In the present review, we discuss the magnetic and magneto- optical properties of Co-doped ZnO thin films by considering also the significant improvements in the properties induced by post-growth irradiation with atomic hydrogen. We also show how all of these properties can be accounted for by a theoretical model based on the formation of Co-VO (oxygen vacancy) complexes and the concurrent presence of shallow donor defects, thus giving a sound support to this model to explain the RT-FM in ZCO DMSs.File | Dimensione | Formato | |
---|---|---|---|
P1_NANOMAT22.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.