In this work the applicability of nano-liquid chromatography (nano-LC)was evaluated for the determination of phytosterols in extra-virgin olive oil samples. These compounds represent a minor part of lipids in vegetable oils, but their quantification can be useful to establish oil origin and to reveal intentional adulterations. The analysis of five main sterols, specifically brassicasterol, stigmasterol, campesterol, cholesterol and beta-sitosterol, was performed in a laboratory-assembled nano-LC system coupled with a UV detector. The separation of all compounds was obtained in about 20 min, employing a capillary column packed with a C18-RP (sub-2 micromparticles) stationary phase for 15 cm. Methanol only was used as mobile phase. The simple method developed and optimized was validated in terms of repeatability, linearity, limit of detection and limit of quantification (0.78 and 1.56 microg/mL, respectively) achieving good results. After this, it was applied to the determination of phytosterols in extra-virgin olive oil samples. Isolation of phytosterols was obtained by solid-phase extraction, after saponification and liquidliquid extraction of the unsaponified fraction with diethyl ether. Recovery tests were performed and values between 90% and 103%, with RSDs within 5%, were obtained. Moreover the nano-LC system was coupled with a mass spectrometer for an accurate identification of phytosterols.
Analysis of phytosterols in extra-virgin olive oil by nano-liquid chromatography.
2009
Abstract
In this work the applicability of nano-liquid chromatography (nano-LC)was evaluated for the determination of phytosterols in extra-virgin olive oil samples. These compounds represent a minor part of lipids in vegetable oils, but their quantification can be useful to establish oil origin and to reveal intentional adulterations. The analysis of five main sterols, specifically brassicasterol, stigmasterol, campesterol, cholesterol and beta-sitosterol, was performed in a laboratory-assembled nano-LC system coupled with a UV detector. The separation of all compounds was obtained in about 20 min, employing a capillary column packed with a C18-RP (sub-2 micromparticles) stationary phase for 15 cm. Methanol only was used as mobile phase. The simple method developed and optimized was validated in terms of repeatability, linearity, limit of detection and limit of quantification (0.78 and 1.56 microg/mL, respectively) achieving good results. After this, it was applied to the determination of phytosterols in extra-virgin olive oil samples. Isolation of phytosterols was obtained by solid-phase extraction, after saponification and liquidliquid extraction of the unsaponified fraction with diethyl ether. Recovery tests were performed and values between 90% and 103%, with RSDs within 5%, were obtained. Moreover the nano-LC system was coupled with a mass spectrometer for an accurate identification of phytosterols.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.