Aerosol–cloud interactions play a crucial role in shaping Earth’s climate and hydrological cycle. Observing these interactions with high precision and accuracy is of the utmost importance for improving climate models and predicting Earth’s climate. Over the past few decades, lidar techniques have emerged as powerful tools for investigating aerosol–cloud interactions due to their ability to provide detailed vertical profiles of aerosol particles and clouds with high spatial and temporal resolutions. This review paper provides an overview of recent advancements in the study of ACI using lidar techniques. The paper begins with a description of the different cloud microphysical processes that are affected by the presence of aerosol, and with an outline of lidar remote sensing application in characterizing aerosol particles and clouds. The subsequent sections delve into the key findings and insights gained from lidar-based studies of aerosol–cloud interactions. This includes investigations into the role of aerosol particles in cloud formation, evolution, and microphysical properties. Finally, the review concludes with an outlook on future research. By reporting the latest findings and methodologies, this review aims to provide valuable insights for researchers engaged in climate science and atmospheric research.

Understanding Aerosol–Cloud Interactions through Lidar Techniques: A Review

Cairo F.;Di Liberto L.;Dionisi D.;Snels M.
2024

Abstract

Aerosol–cloud interactions play a crucial role in shaping Earth’s climate and hydrological cycle. Observing these interactions with high precision and accuracy is of the utmost importance for improving climate models and predicting Earth’s climate. Over the past few decades, lidar techniques have emerged as powerful tools for investigating aerosol–cloud interactions due to their ability to provide detailed vertical profiles of aerosol particles and clouds with high spatial and temporal resolutions. This review paper provides an overview of recent advancements in the study of ACI using lidar techniques. The paper begins with a description of the different cloud microphysical processes that are affected by the presence of aerosol, and with an outline of lidar remote sensing application in characterizing aerosol particles and clouds. The subsequent sections delve into the key findings and insights gained from lidar-based studies of aerosol–cloud interactions. This includes investigations into the role of aerosol particles in cloud formation, evolution, and microphysical properties. Finally, the review concludes with an outlook on future research. By reporting the latest findings and methodologies, this review aims to provide valuable insights for researchers engaged in climate science and atmospheric research.
2024
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Roma
Istituto di Scienze Marine - ISMAR - Sede Secondaria Roma
aerosol
cloud
lidar
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-02788-v3.pdf

accesso aperto

Descrizione: https://doi.org/10.3390/rs16152788
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/498501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact