Amylose tris(5-chloro-2-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSP) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the nature of silica, the particle size and pore diameter, the chiral selector loading onto silica, the mobile phase composition and pH, as well as separation variables such as a linearflowrate of the mobile phase, applied voltage in CEC, etc. on the separation of enantiomers was studied. It was found that CSPs based on amylose tris(5-chloro-2-methylphenylcarbamate) can be used for preparation of stable capillary columns for enantioseparations by nano-LC and CEC in combination with polar organic and aqueous–organic mobile phases. Higher peak efficiency was observed in CEC than in nano-LC.

Enantioseparations on amylose tris(5-chloro-2-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography

Salvatore Fanali;Giovanni D'Orazio;
2010

Abstract

Amylose tris(5-chloro-2-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSP) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the nature of silica, the particle size and pore diameter, the chiral selector loading onto silica, the mobile phase composition and pH, as well as separation variables such as a linearflowrate of the mobile phase, applied voltage in CEC, etc. on the separation of enantiomers was studied. It was found that CSPs based on amylose tris(5-chloro-2-methylphenylcarbamate) can be used for preparation of stable capillary columns for enantioseparations by nano-LC and CEC in combination with polar organic and aqueous–organic mobile phases. Higher peak efficiency was observed in CEC than in nano-LC.
2010
Istituto per i Sistemi Biologici - ISB (ex IMC)
enantiomers
capillary electrochromatography
nano-liquid chromatography
Polysaccharide-based chiral stationary phases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/49860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 39
social impact