: The limited availability of specialized image databases (particularly in hospitals, where tools vary between providers) makes it difficult to train deep learning models. This paper presents a few-shot learning methodology that uses a pre-trained ResNet integrated with an encoder as a backbone to encode conditional shape information for the classification of neonatal resuscitation equipment from less than 100 natural images. The model is also strengthened by incorporating a reliability score, which enriches the prediction with an estimation of classification reliability. The model, whose performance is cross-validated, reached a median accuracy performance of over 99% (and a lower limit of 73.4% for the least accurate model/fold) using only 87 meta-training images. During the test phase on complex natural images, performance was slightly degraded due to a sub-optimal segmentation strategy (FastSAM) required to maintain the real-time inference phase (median accuracy 87.25%). This methodology proves to be excellent for applying complex classification models to contexts (such as neonatal resuscitation) that are not available in public databases. Improvements to the automatic segmentation strategy prior to the extraction of conditional information will allow a natural application in simulation and hospital settings.

Few-shot conditional learning: automatic and reliable device classification for medical test equipment

Pachetti E.;Del Corso G.
;
Colantonio S.
2024

Abstract

: The limited availability of specialized image databases (particularly in hospitals, where tools vary between providers) makes it difficult to train deep learning models. This paper presents a few-shot learning methodology that uses a pre-trained ResNet integrated with an encoder as a backbone to encode conditional shape information for the classification of neonatal resuscitation equipment from less than 100 natural images. The model is also strengthened by incorporating a reliability score, which enriches the prediction with an estimation of classification reliability. The model, whose performance is cross-validated, reached a median accuracy performance of over 99% (and a lower limit of 73.4% for the least accurate model/fold) using only 87 meta-training images. During the test phase on complex natural images, performance was slightly degraded due to a sub-optimal segmentation strategy (FastSAM) required to maintain the real-time inference phase (median accuracy 87.25%). This methodology proves to be excellent for applying complex classification models to contexts (such as neonatal resuscitation) that are not available in public databases. Improvements to the automatic segmentation strategy prior to the extraction of conditional information will allow a natural application in simulation and hospital settings.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Few-shot learning
Newborn resuscitation
Simulation-based medical education
Trustworthy AI
Uncertainty quantification
File in questo prodotto:
File Dimensione Formato  
jimaging-10-00167-v2.pdf

accesso aperto

Descrizione: Final version
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.7 MB
Formato Adobe PDF
4.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/498801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact