G-Quadruplexes are formed by guanine rich DNA/RNA sequences in the presence of metal ions, which occupy the central cavity of these four-stranded structures. We show that these metal ions have a significant effect on the photogeneration and the reactivity of guanine radicals. Transient absorption experiments on G-quadruplexes formed by association of four TGGGGT strands in the presence of K+ reveal that the quantum yield of one-photon ionization at 266 nm (8.1 × 10-3) is twice as high as that determined in the presence of Na+. Replacement of Na+ with K+ also suppresses one reaction path involving deprotonated radicals, (G-H2)â → (G-H1)â tautomerization. Such behavior shows that the underlying mechanisms are governed by dynamical processes, controlled by the mobility of metal ions, which is higher for Na+ than for K+. These findings may contribute to our understanding of the ultraviolet-induced DNA damage and optimize optoelectronic devices based on four-stranded structures, beyond DNA.
Potassium Ions Enhance Guanine Radical Generation upon Absorption of Low-Energy Photons by G-Quadruplexes and Modify Their Reactivity
Improta R.;
2020
Abstract
G-Quadruplexes are formed by guanine rich DNA/RNA sequences in the presence of metal ions, which occupy the central cavity of these four-stranded structures. We show that these metal ions have a significant effect on the photogeneration and the reactivity of guanine radicals. Transient absorption experiments on G-quadruplexes formed by association of four TGGGGT strands in the presence of K+ reveal that the quantum yield of one-photon ionization at 266 nm (8.1 × 10-3) is twice as high as that determined in the presence of Na+. Replacement of Na+ with K+ also suppresses one reaction path involving deprotonated radicals, (G-H2)â → (G-H1)â tautomerization. Such behavior shows that the underlying mechanisms are governed by dynamical processes, controlled by the mobility of metal ions, which is higher for Na+ than for K+. These findings may contribute to our understanding of the ultraviolet-induced DNA damage and optimize optoelectronic devices based on four-stranded structures, beyond DNA.File | Dimensione | Formato | |
---|---|---|---|
behmand-et-al-2020-potassium-ions-enhance-guanine-radical-generation-upon-absorption-of-low-energy-photons-by-g.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.