The thienoguanine nucleobase (thGb) is an isomorphic fluorescent analogue of guanine. In aqueous buffer at neutral pH, thGb exists as a mixture of two ground-state H1 and H3 keto-amino tautomers with distinct absorption and emission spectra and high quantum yield. In this work, we performed the first systematic photophysical characterization of thGb as a function of pH (2 to 12). Steady-state and time-resolved fluorescence spectroscopies, supplemented with theoretical calculations, enabled us to identify three additional thGb forms, resulting from pH-dependent ground-state and excited-state reactions. Moreover, a thorough analysis allowed us to retrieve their individual absorption and emission spectra as well as the equilibrium constants which govern their interconversion. From these data, the complete photoluminescence pathway of thGb in aqueous solution and its dependence as a function of pH was deduced. As the identified forms differ by their spectra and fluorescence lifetime, thGb could be used as a probe for sensing local pH changes under acidic conditions.

Deciphering the pH-dependence of ground- A nd excited-state equilibria of thienoguanine

Improta R.
;
2020

Abstract

The thienoguanine nucleobase (thGb) is an isomorphic fluorescent analogue of guanine. In aqueous buffer at neutral pH, thGb exists as a mixture of two ground-state H1 and H3 keto-amino tautomers with distinct absorption and emission spectra and high quantum yield. In this work, we performed the first systematic photophysical characterization of thGb as a function of pH (2 to 12). Steady-state and time-resolved fluorescence spectroscopies, supplemented with theoretical calculations, enabled us to identify three additional thGb forms, resulting from pH-dependent ground-state and excited-state reactions. Moreover, a thorough analysis allowed us to retrieve their individual absorption and emission spectra as well as the equilibrium constants which govern their interconversion. From these data, the complete photoluminescence pathway of thGb in aqueous solution and its dependence as a function of pH was deduced. As the identified forms differ by their spectra and fluorescence lifetime, thGb could be used as a probe for sensing local pH changes under acidic conditions.
2020
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
fluorescent probe, dna, calculations
File in questo prodotto:
File Dimensione Formato  
PhysChemChemPhys2020.pdf

solo utenti autorizzati

Descrizione: Main text
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.06 MB
Formato Adobe PDF
4.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhysChemChemPhys2020-SI.pdf

solo utenti autorizzati

Descrizione: Supporting Information
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 768.4 kB
Formato Adobe PDF
768.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/499162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact