Open-domain question answering requires retrieval systems able to cope with the diverse and varied nature of questions, providing accurate answers across a broad spectrum of query types and topics. To deal with such topic heterogeneity through a unique model, we propose DESIRE-ME, a neural information retrieval model that leverages the Mixture-of-Experts framework to combine multiple specialized neural models. We rely on Wikipedia data to train an effective neural gating mechanism that classifies the incoming query and that weighs the predictions of the different domain-specific experts correspondingly. This allows DESIRE-ME to specialize adaptively in multiple domains. Through extensive experiments on publicly available datasets, we show that our proposal can effectively generalize domain-enhanced neural models. DESIRE-ME excels in handling open-domain questions adaptively, boosting by up to 12% in NDCG@10 and 22% in P@1, the underlying state-of-the-art dense retrieval model

DESIRE-ME: Domain-Enhanced Supervised Information Retrieval Using Mixture-of-Experts

Kasela P.
Membro del Collaboration Group
;
Pasi G.;Perego R.;Tonellotto N.
Membro del Collaboration Group
2024

Abstract

Open-domain question answering requires retrieval systems able to cope with the diverse and varied nature of questions, providing accurate answers across a broad spectrum of query types and topics. To deal with such topic heterogeneity through a unique model, we propose DESIRE-ME, a neural information retrieval model that leverages the Mixture-of-Experts framework to combine multiple specialized neural models. We rely on Wikipedia data to train an effective neural gating mechanism that classifies the incoming query and that weighs the predictions of the different domain-specific experts correspondingly. This allows DESIRE-ME to specialize adaptively in multiple domains. Through extensive experiments on publicly available datasets, we show that our proposal can effectively generalize domain-enhanced neural models. DESIRE-ME excels in handling open-domain questions adaptively, boosting by up to 12% in NDCG@10 and 22% in P@1, the underlying state-of-the-art dense retrieval model
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-031-56060-6
Information retrieval
File in questo prodotto:
File Dimensione Formato  
ECIR_2024___DESIRE_ME__Camera_Ready_.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 327.1 kB
Formato Adobe PDF
327.1 kB Adobe PDF Visualizza/Apri
Perego-Tonellotto_LNCS 2024.pdf

solo utenti autorizzati

Descrizione: DESIRE-ME
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 254.95 kB
Formato Adobe PDF
254.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/499222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact