This paper introduces TUEF, a topic-oriented user-interaction model for fair Expert Finding in Community Question Answering (CQA) platforms. The Expert Finding task in CQA platforms involves identifying proficient users capable of providing accurate answers to questions from the community. To this aim, TUEF improves the robustness and credibility of the CQA platform through a more precise Expert Finding component. The key idea of TUEF is to exploit diverse types of information, specifically, content and social information, to identify more precisely experts thus improving the robustness of the task. We assess TUEF through reproducible experiments conducted on a large-scale dataset from StackOverflow. The results consistently demonstrate that TUEF outperforms state-of-the-art competitors while promoting transparent expert identification.

Towards robust expert finding in community question answering platforms

Amendola M.
Membro del Collaboration Group
;
Passarella A.;Perego R.
Membro del Collaboration Group
2024

Abstract

This paper introduces TUEF, a topic-oriented user-interaction model for fair Expert Finding in Community Question Answering (CQA) platforms. The Expert Finding task in CQA platforms involves identifying proficient users capable of providing accurate answers to questions from the community. To this aim, TUEF improves the robustness and credibility of the CQA platform through a more precise Expert Finding component. The key idea of TUEF is to exploit diverse types of information, specifically, content and social information, to identify more precisely experts thus improving the robustness of the task. We assess TUEF through reproducible experiments conducted on a large-scale dataset from StackOverflow. The results consistently demonstrate that TUEF outperforms state-of-the-art competitors while promoting transparent expert identification.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Istituto di informatica e telematica - IIT
978-3-031-56068-2
Community Question & Answering
Expert Finding
File in questo prodotto:
File Dimensione Formato  
Expert_Finding-2.pdf

accesso aperto

Descrizione: This is the Submitted version (preprint) of the following paper: (inserire autori, titolo, rivista, anno). The final published version is available on the publisher website https://dl.acm.org/doi/10.1007/978-3-031-56069-9_12.. (Inserire DOI dell’articolo).
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 431.06 kB
Formato Adobe PDF
431.06 kB Adobe PDF Visualizza/Apri
Perego_LNCS-2024.pdf

solo utenti autorizzati

Descrizione: Towards Robust Expert Finding in Community Question Answering Platforms
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 401.7 kB
Formato Adobe PDF
401.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/499782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact