A general constructive approach for training neural networks in classification problems is presented. This approach is used to construct a particular connectionist model, named Switching Neural Network (SNN), based on the conversion of the original problem in a Boolean lattice domain. The training of an SNN can be performed through a constructive algorithm, called Switch Programming (SP), based on the solution of a proper linear programming problem. Simulation results obtained on the StatLog benchmark show the good quality of the SNNs trained with SP.
A constructive technique based on linear programming for training switching neural networks
M Muselli
2008
Abstract
A general constructive approach for training neural networks in classification problems is presented. This approach is used to construct a particular connectionist model, named Switching Neural Network (SNN), based on the conversion of the original problem in a Boolean lattice domain. The training of an SNN can be performed through a constructive algorithm, called Switch Programming (SP), based on the solution of a proper linear programming problem. Simulation results obtained on the StatLog benchmark show the good quality of the SNNs trained with SP.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.