A clear understanding the behavior of the error probability (EP) as a function of signal-to-noise ratio (SNR) and other system parameters is fundamental for assessing the design of digital wireless communication systems. We propose an analytical framework based on the log-concavity property of the EP which we prove for a wide family of multidimensional modulation formats in the presence of Gaussian disturbances and fading. Based on this property, we construct a class of local bounds for the EP that improve known generic bounds in a given region of the SNR and are invertible, as well as easily tractable for further analysis. This concept is motivated by the fact that communication systems often operate with performance in a certain region of interest (ROI) and, thus, it may be advantageous to have tighter bounds within this region instead of generic bounds valid for all SNRs. We present a possible application of these local bounds, but their relevance is beyond the example made in this paper.
Log-Concavity Property of the Error Probability with Application to Local Bounds for Wireless Communications
A Conti;V Tralli
2009
Abstract
A clear understanding the behavior of the error probability (EP) as a function of signal-to-noise ratio (SNR) and other system parameters is fundamental for assessing the design of digital wireless communication systems. We propose an analytical framework based on the log-concavity property of the EP which we prove for a wide family of multidimensional modulation formats in the presence of Gaussian disturbances and fading. Based on this property, we construct a class of local bounds for the EP that improve known generic bounds in a given region of the SNR and are invertible, as well as easily tractable for further analysis. This concept is motivated by the fact that communication systems often operate with performance in a certain region of interest (ROI) and, thus, it may be advantageous to have tighter bounds within this region instead of generic bounds valid for all SNRs. We present a possible application of these local bounds, but their relevance is beyond the example made in this paper.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.