Many real-world engineering design problems are naturally cast in the form of optimization programs with uncertainty-contaminated data. In this context, a reliable design must be able to cope in some way with the presence of uncertainty. In this paper, we consider two standard philosophies for finding optimal solutions for uncertain convex optimization problems. In the first approach, classical in the stochastic optimization literature, the optimal design should minimize the expected value of the objective function with respect to uncertainty (average approach), while in the second one it should minimize the worst-case objective (worst-case or min-max approach). Both approaches are briefly reviewed in this paper and are shown to lead to exact and numerically efficient solution schemes when the uncertainty enters the data in simple form. For general uncertainty dependence however, the problems are numerically hard. In this paper, we present two techniques based on uncertainty randomization that permit to solve efficiently some suitable probabilistic relaxation of the indicated problems, with full generality with respect to the way in which the uncertainty enters the problem data. In the specific context of truss topology design, uncertainty in the problem arises, for instance, from imprecise knowledge of material characteristics and/or loading configurations. In this paper, we show how reliable structural design can be obtained using the proposed techniques based on the interplay of convex optimization and randomization.

Optimization Under Uncertainty with Applications to Design of Truss Structures

G Calafiore;F Dabbene
2008

Abstract

Many real-world engineering design problems are naturally cast in the form of optimization programs with uncertainty-contaminated data. In this context, a reliable design must be able to cope in some way with the presence of uncertainty. In this paper, we consider two standard philosophies for finding optimal solutions for uncertain convex optimization problems. In the first approach, classical in the stochastic optimization literature, the optimal design should minimize the expected value of the objective function with respect to uncertainty (average approach), while in the second one it should minimize the worst-case objective (worst-case or min-max approach). Both approaches are briefly reviewed in this paper and are shown to lead to exact and numerically efficient solution schemes when the uncertainty enters the data in simple form. For general uncertainty dependence however, the problems are numerically hard. In this paper, we present two techniques based on uncertainty randomization that permit to solve efficiently some suitable probabilistic relaxation of the indicated problems, with full generality with respect to the way in which the uncertainty enters the problem data. In the specific context of truss topology design, uncertainty in the problem arises, for instance, from imprecise knowledge of material characteristics and/or loading configurations. In this paper, we show how reliable structural design can be obtained using the proposed techniques based on the interplay of convex optimization and randomization.
2008
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
uncertainty; convex optimization; truss topology design; randomized algorithms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/50094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact