In this paper, we address the question of whether general-purpose LLM-based tools may be useful for detecting requirements variability in Natural Language (NL) requirements documents. For this purpose, we conduct a preliminary exploratory study considering OpenAI chatGPT-3.5 and Microsoft Bing. Using two exemplar NL requirements documents, we compare the variability detection capability of the chatbots with that of experts and that of a rule-based NLP tool.
Exploring LLMs’ ability to detect variability in requirements
Fantechi A.;Gnesi S.;
2024
Abstract
In this paper, we address the question of whether general-purpose LLM-based tools may be useful for detecting requirements variability in Natural Language (NL) requirements documents. For this purpose, we conduct a preliminary exploratory study considering OpenAI chatGPT-3.5 and Microsoft Bing. Using two exemplar NL requirements documents, we compare the variability detection capability of the chatbots with that of experts and that of a rule-based NLP tool.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
978-3-031-57327-9_11.pdf
solo utenti autorizzati
Descrizione: Exploring LLMs’ Ability to Detect Variability in Requirements
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.