We study the performance of steepest descent (SD) and least mean square (LMS) algorithms applied to linear detection for multiple-input multiple-output (MIMO) systems in a correlated Rayleigh fading environment. By using random matrix theory, we first study stability for a fixed step size parameter. Then, we consider two always-stable channel-adaptive strategies for the choice of the step size and analytically evaluate their performance. Finally, we derive bounds on the mean value of misadjustment for the LMS algorithm.

Statistical analysis of Steepest Descent and LMS Detection Algorithms for MIMO Systems

A Zanella;M Chiani;
2011

Abstract

We study the performance of steepest descent (SD) and least mean square (LMS) algorithms applied to linear detection for multiple-input multiple-output (MIMO) systems in a correlated Rayleigh fading environment. By using random matrix theory, we first study stability for a fixed step size parameter. Then, we consider two always-stable channel-adaptive strategies for the choice of the step size and analytically evaluate their performance. Finally, we derive bounds on the mean value of misadjustment for the LMS algorithm.
2011
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
MIMO
Wishart matrices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/50180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact