: The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 bp repeats, believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long-read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts vary according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream from 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of Chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.

TERRA ONTseq: a long-read-based sequencing pipeline to study the human telomeric transcriptome

Roberta Alfieri
Secondo
Formal Analysis
;
Silvia Bione;
2024

Abstract

: The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 bp repeats, believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long-read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts vary according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream from 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of Chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.
2024
Istituto di Tecnologie Biomediche - ITB
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
CpG dinucleotide promoters
TERRA
long-read nanopore sequencing
telomeres
transcription
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/502442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact