This letter proposes a novel robust nonlinear model predictive control (NMPC) algorithm for systems described by a generic class of recurrent neural networks. The algorithm enables tracking of constant setpoints in the presence of input and output constraints. The terminal set and cost are defined based on linear matrix inequalities to ensure convergence and recursive feasibility in presence of process disturbances. Simulation results on a quadruple tank nonlinear process demonstrate the effectiveness of the proposed control approach.

LMI-Based Design of a Robust Model Predictive Controller for a Class of Recurrent Neural Networks With Guaranteed Properties

Ravasio D.
Primo
;
Ballarino A.
Ultimo
2024

Abstract

This letter proposes a novel robust nonlinear model predictive control (NMPC) algorithm for systems described by a generic class of recurrent neural networks. The algorithm enables tracking of constant setpoints in the presence of input and output constraints. The terminal set and cost are defined based on linear matrix inequalities to ensure convergence and recursive feasibility in presence of process disturbances. Simulation results on a quadruple tank nonlinear process demonstrate the effectiveness of the proposed control approach.
2024
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Nonlinear model predictive control
recurrent neural networks
robust control
File in questo prodotto:
File Dimensione Formato  
LMI_based_design_DanieleRavasio.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 686.72 kB
Formato Adobe PDF
686.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LMI_based_design_of_a_robust_model_predictive_controller.pdf

accesso aperto

Descrizione: This is the Author Accepted Manuscript (postprint) version of the following paper: Ravasio, Farina, Ballarino, LMI-based design of a robust model predictive controller for a class of Recurrent Neural Networks with guaranteed properties, 2024) peer-reviewed and accepted for publication in IEEE Control Systems Letters, vol. 8, pp. 1126-1131, 2024, doi: 10.1109/LCSYS.2024.3408040.
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 373.6 kB
Formato Adobe PDF
373.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/502643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact