This letter proposes a novel robust nonlinear model predictive control (NMPC) algorithm for systems described by a generic class of recurrent neural networks. The algorithm enables tracking of constant setpoints in the presence of input and output constraints. The terminal set and cost are defined based on linear matrix inequalities to ensure convergence and recursive feasibility in presence of process disturbances. Simulation results on a quadruple tank nonlinear process demonstrate the effectiveness of the proposed control approach.

LMI-Based Design of a Robust Model Predictive Controller for a Class of Recurrent Neural Networks With Guaranteed Properties

Ravasio D.
Primo
;
Ballarino A.
Ultimo
2024

Abstract

This letter proposes a novel robust nonlinear model predictive control (NMPC) algorithm for systems described by a generic class of recurrent neural networks. The algorithm enables tracking of constant setpoints in the presence of input and output constraints. The terminal set and cost are defined based on linear matrix inequalities to ensure convergence and recursive feasibility in presence of process disturbances. Simulation results on a quadruple tank nonlinear process demonstrate the effectiveness of the proposed control approach.
2024
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Nonlinear model predictive control
recurrent neural networks
robust control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/502643
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact