Chiral lattice modes are hybrid states arising from the chiral plasmonic particles assembled in ordered arrays with opportune periodicity. These resonances exhibit dependence on excitation handedness, and their observation in plasmonic lattices is strictly related to the chiroptical features of the fundamental plasmonic unit. Here, the emergence of chiral surface lattice resonances (c-SLRs) is shown in properly engineered arrays of nanohelices (NHs), fully three dimensional (3D) chiral nano-objects fabricated by focused ion beam processing. By tuning the relative weight of plasmonic and photonic components in the hybrid mode, the physical mechanism of strong diffractive coupling leading to the emergence of the lattice modes is analyzed, opening the way to the engineering of chiral plasmonic systems for sensing applications. In particular, a coupling regime is identified where the combination of a large intrinsic circular dichroism (CD) of the plasmonic resonance with a well-defined balance between the photonic quality factor (Q factor) and the plasmonic field enhancement (M) maximizes the capability of the system to discriminate refractive index (RI) changes in the surrounding medium. The results lay the foundation for exploiting CD in plasmonic lattices to high performance refractometric sensing.

Surface Lattice Resonances in 3D Chiral Metacrystals for Plasmonic Sensing

Manoccio, Mariachiara;Tasco, Vittorianna
;
Todisco, Francesco;Passaseo, Adriana;Cuscuna, Massimo;Gigli, Giuseppe;Esposito, Marco
2023

Abstract

Chiral lattice modes are hybrid states arising from the chiral plasmonic particles assembled in ordered arrays with opportune periodicity. These resonances exhibit dependence on excitation handedness, and their observation in plasmonic lattices is strictly related to the chiroptical features of the fundamental plasmonic unit. Here, the emergence of chiral surface lattice resonances (c-SLRs) is shown in properly engineered arrays of nanohelices (NHs), fully three dimensional (3D) chiral nano-objects fabricated by focused ion beam processing. By tuning the relative weight of plasmonic and photonic components in the hybrid mode, the physical mechanism of strong diffractive coupling leading to the emergence of the lattice modes is analyzed, opening the way to the engineering of chiral plasmonic systems for sensing applications. In particular, a coupling regime is identified where the combination of a large intrinsic circular dichroism (CD) of the plasmonic resonance with a well-defined balance between the photonic quality factor (Q factor) and the plasmonic field enhancement (M) maximizes the capability of the system to discriminate refractive index (RI) changes in the surrounding medium. The results lay the foundation for exploiting CD in plasmonic lattices to high performance refractometric sensing.
2023
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
chiral photonics
chiral surface lattice resonances
chirality
circular dichroism
focused ion beam induced deposition
plasmonic sensing
File in questo prodotto:
File Dimensione Formato  
Advanced Science - 2022 - Manoccio - Surface Lattice Resonances in 3D Chiral Metacrystals for Plasmonic Sensing.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/502921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact