The N-terminal portion of the large envelope protein of the human hepatitis B virus (HBV), the preS1 domain, plays a fundamental role in cell attachment and infectivity. Recent investigations have suggested that myristylation of preS1 Gly(2) residue is essential for viral infectivity, but the importance of this post-translational modification on HBV-receptor interaction has not been elucidated completely. In this study we produced, using stepwise solid-phase chemical synthesis, the entire preS1[1-119] domain (adw2 subtype), and compared its receptor binding activity with the myristylated form, myristyl-preS1[2-119] in order to define the importance of fatty acid modification. Both synthetic proteins were fully characterized in terms of structural identity using TOF-MALDI mass spectrometry and analysis of tryptic fragments. Circular dichroism measurements indicated a low content of ordered structure in the preS1 protein, while the propensity of the myristylated derivative to assume a conformationally defined structure was more evident. HBV-receptor binding assays performed with plasma membranes preparations from the hepatocyte carcinoma cell line HepG2 clearly showed that the preS1[1-119] domain recognizes the HBV receptor, and confirmed that binding is occurring through the 21-47 region. The myristylated derivative recognized HBV receptor preparations with higher affinity than the preS1 domain, suggesting that the conformational transitions induced in the preS1 moiety by fatty acid post-translational modification are important for efficient attachment of viral particles to HBV receptors.

N-terminal myristylation of HBV preS1 domain enhances receptor recognition

De Falco S;Ruvo M;
2001

Abstract

The N-terminal portion of the large envelope protein of the human hepatitis B virus (HBV), the preS1 domain, plays a fundamental role in cell attachment and infectivity. Recent investigations have suggested that myristylation of preS1 Gly(2) residue is essential for viral infectivity, but the importance of this post-translational modification on HBV-receptor interaction has not been elucidated completely. In this study we produced, using stepwise solid-phase chemical synthesis, the entire preS1[1-119] domain (adw2 subtype), and compared its receptor binding activity with the myristylated form, myristyl-preS1[2-119] in order to define the importance of fatty acid modification. Both synthetic proteins were fully characterized in terms of structural identity using TOF-MALDI mass spectrometry and analysis of tryptic fragments. Circular dichroism measurements indicated a low content of ordered structure in the preS1 protein, while the propensity of the myristylated derivative to assume a conformationally defined structure was more evident. HBV-receptor binding assays performed with plasma membranes preparations from the hepatocyte carcinoma cell line HepG2 clearly showed that the preS1[1-119] domain recognizes the HBV receptor, and confirmed that binding is occurring through the 21-47 region. The myristylated derivative recognized HBV receptor preparations with higher affinity than the preS1 domain, suggesting that the conformational transitions induced in the preS1 moiety by fatty acid post-translational modification are important for efficient attachment of viral particles to HBV receptors.
2001
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/5032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact