The cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3′ untranslated regions (3′UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27Kip1 by specifically targeting its 3′UTR, and competes with miR-221/222 binding at an overlapping site in the 3′UTR, thus impairing miR-221/222 inhibitory activity. Upon binding to p27Kip1 3′UTR, CPEB1 promotes elongation of poly-A tail and the subsequent translation of p27Kip1 mRNA. This leads to higher levels of p27Kip1in the cell, in turn significantly inhibiting cell proliferation, and confers to CPEB1 a potential value as a tumor suppressor in Glioblastoma.

CPEB1 restrains proliferation of Glioblastoma cells through the regulation of p27Kip1 mRNA translation

D'Amico S.
Membro del Collaboration Group
;
2016

Abstract

The cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3′ untranslated regions (3′UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27Kip1 by specifically targeting its 3′UTR, and competes with miR-221/222 binding at an overlapping site in the 3′UTR, thus impairing miR-221/222 inhibitory activity. Upon binding to p27Kip1 3′UTR, CPEB1 promotes elongation of poly-A tail and the subsequent translation of p27Kip1 mRNA. This leads to higher levels of p27Kip1in the cell, in turn significantly inhibiting cell proliferation, and confers to CPEB1 a potential value as a tumor suppressor in Glioblastoma.
2016
FARMACOLOGIA TRASLAZIONALE - IFT
00133 Rome
Department of biomedicine and prevention
Italy
University of Rome "Tor vergata"
File in questo prodotto:
File Dimensione Formato  
srep25219.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/503409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact