The exciton-polaritons derived from the light-matter interaction of an optical bound state in the continuum (BIC) with the strong excitonic resonance in a transition metal dichalcogenide (TMD) monolayer can inherit ultra-long radiative lifetimes and significant nonlinearities up to room temperature. Yet such realization can be challenging with conventional approaches to the photonic cavity design, typically due to poorly-resolved Rabi splittings at room temperature and an unstable energy positioning of the BIC state. We show and experimentally validate a strategy to dramatically improve the state-of-the-art on both points, by embedding a tungsten disulfide (WS2) monolayer deep within a Bloch-surface-wave stack, where the photonic mode is moulded by a 1D photonic crystal with a compound periodicity. In particular, we introduce a deterministic placement principle to the design of the PhC, allowing to stabilize the energy positioning of a topologically-protected BIC polariton eigenstate, with an effective mass which we can robustly pre-assign at choice as either positive or negative. This is in stark contrast to typical waveguide realizations of polariton BICs: only negative polariton effective masses can be commonly achieved, while sudden jumps to a weaker-interacting positive-effective-mass BIC are at the same time possible upon small perturbations, in fact hijacking the advantage from a topological protection when present.

Deterministic placement and effective-mass pinning of topological polariton bound states in the continuum

Maggiolini, E.
;
Polimeno, L.;Todisco, F.;Ardizzone, V.;Mastria, R.;Cannavale, A.;Pugliese, M.;Rizzo, A.;Maiorano, V.;Gigli, G.;Gerace, D.;Sanvitto, D.
;
Ballarini, D.
2024

Abstract

The exciton-polaritons derived from the light-matter interaction of an optical bound state in the continuum (BIC) with the strong excitonic resonance in a transition metal dichalcogenide (TMD) monolayer can inherit ultra-long radiative lifetimes and significant nonlinearities up to room temperature. Yet such realization can be challenging with conventional approaches to the photonic cavity design, typically due to poorly-resolved Rabi splittings at room temperature and an unstable energy positioning of the BIC state. We show and experimentally validate a strategy to dramatically improve the state-of-the-art on both points, by embedding a tungsten disulfide (WS2) monolayer deep within a Bloch-surface-wave stack, where the photonic mode is moulded by a 1D photonic crystal with a compound periodicity. In particular, we introduce a deterministic placement principle to the design of the PhC, allowing to stabilize the energy positioning of a topologically-protected BIC polariton eigenstate, with an effective mass which we can robustly pre-assign at choice as either positive or negative. This is in stark contrast to typical waveguide realizations of polariton BICs: only negative polariton effective masses can be commonly achieved, while sudden jumps to a weaker-interacting positive-effective-mass BIC are at the same time possible upon small perturbations, in fact hijacking the advantage from a topological protection when present.
2024
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Topology, Exciton-polaritons, Bound-state in the continuum, bloch surface wave
File in questo prodotto:
File Dimensione Formato  
Maggiolini_2024_J._Phys.__Conf._Ser._2725_012005.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/503663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact