The development of self-powered sensing technologies embedded in textiles is a cornerstone for enabling radically novel healthcare, well-being and defence solutions. The steppingstone for these advances is a new class of unconventional energy harvesters able to convert presently unused sources from our living environment such as sounds and vibrations into electrical energy. These generators would have to be flexible, mechanically robust, lightweight, resilient and they should produce a viable electric output. Here we present a novel textile-integrated triboelectric nanogenerator capable of sensing and harvesting low-frequency acoustic energy. These capabilities are enabled by a unique combination of sustainable materials such as beeswax as a triboelectric layer and graphene-based electrode, endowing multiple functionalities. Specifically, our device can sense ground-borne sounds in the 10–200 Hz frequency range, detect human voices, recognise human emotions, and harvest energy from environmental noise and vibrations. Additionally, the dynamic molecular interactions and the hydrophobic nature of the triboelectric layer provide intrinsic thermal healing, water-repellent, and self-cleaning features, ensuring device functionality in bending and humidity environments.

Textile beeswax triboelectric nanogenerator as self-powered sound detectors and mechano-acoustic energy harvesters

Mastria, Rosanna;
2024

Abstract

The development of self-powered sensing technologies embedded in textiles is a cornerstone for enabling radically novel healthcare, well-being and defence solutions. The steppingstone for these advances is a new class of unconventional energy harvesters able to convert presently unused sources from our living environment such as sounds and vibrations into electrical energy. These generators would have to be flexible, mechanically robust, lightweight, resilient and they should produce a viable electric output. Here we present a novel textile-integrated triboelectric nanogenerator capable of sensing and harvesting low-frequency acoustic energy. These capabilities are enabled by a unique combination of sustainable materials such as beeswax as a triboelectric layer and graphene-based electrode, endowing multiple functionalities. Specifically, our device can sense ground-borne sounds in the 10–200 Hz frequency range, detect human voices, recognise human emotions, and harvest energy from environmental noise and vibrations. Additionally, the dynamic molecular interactions and the hydrophobic nature of the triboelectric layer provide intrinsic thermal healing, water-repellent, and self-cleaning features, ensuring device functionality in bending and humidity environments.
2024
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Textile
Beeswax
Triboelectric nanogenerators
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2211285523009461-main.pdf

accesso aperto

Licenza: Creative commons
Dimensione 7.31 MB
Formato Adobe PDF
7.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/503781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact