Turbulent phenomena are among the most striking effects that both classical and quantum fluids can exhibit. Although classical turbulence is ubiquitous in nature, the observation of quantum turbulence requires the precise manipulation of quantum fluids such as superfluid helium or atomic Bose–Einstein condensates. Here we demonstrate the turbulent dynamics of a two-dimensional quantum fluid of exciton–polaritons, hybrid light–matter quasiparticles, both by measuring the kinetic energy spectrum and showing the onset of vortex clustering. We demonstrate that the formation of clusters of quantum vortices is triggered by the increase of the incompressible kinetic energy per vortex, showing the tendency of the vortex-gas towards highly excited configurations despite the dissipative nature of our system. These results lay the basis for investigations of quantum turbulence in two-dimensional fluids of light.

Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids

Panico, R.;Comaron, P.;Lanotte, A. S.;Trypogeorgos, D.;Gigli, G.;De Giorgi, M.;Ardizzone, V.;Sanvitto, D.;Ballarini, D.
2023

Abstract

Turbulent phenomena are among the most striking effects that both classical and quantum fluids can exhibit. Although classical turbulence is ubiquitous in nature, the observation of quantum turbulence requires the precise manipulation of quantum fluids such as superfluid helium or atomic Bose–Einstein condensates. Here we demonstrate the turbulent dynamics of a two-dimensional quantum fluid of exciton–polaritons, hybrid light–matter quasiparticles, both by measuring the kinetic energy spectrum and showing the onset of vortex clustering. We demonstrate that the formation of clusters of quantum vortices is triggered by the increase of the incompressible kinetic energy per vortex, showing the tendency of the vortex-gas towards highly excited configurations despite the dissipative nature of our system. These results lay the basis for investigations of quantum turbulence in two-dimensional fluids of light.
2023
Istituto di Nanotecnologia - NANOTEC
turbulence, quantum hydrodynamics
File in questo prodotto:
File Dimensione Formato  
2205.02925v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri
s41566-023-01174-4.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
41566_2023_1174_MOESM1_ESM.pdf

non disponibili

Descrizione: Supplemental Material
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/504081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact