Sequencing batch membrane bioreactors can be a good option in up-grading small municipal plant and for industrial applications, maintaining some of the advantages of both original technologies (effluent quality improvement, flexibility and simplicity of realization, operation and control). In this study, the effects of volumetric exchange ratio (VER) and aeration/filtration strategy have been evaluated. Moreover, with the adoption of cycles shorter than 8 h, the opportunity of further simplification of the membrane operation has been tested by choosing a continuous filtration mode instead of the usual short cycle of permeation/relaxation. Two lab-scales MBR equipped with Zenon hollow fiber modules were fed on real primary effluent. For all tests, hydraulic retention time of 10 h and sludge retention time of 60 days have been adopted. Different cycles have been investigated, lasting between 1 and 8 h and all comprising an anoxic phase to allow for denitrification. Operation at low VER resulted in better effluent quality with no limitations to the denitrification phase. For VER >33% a pre-aeration step was required before effluent withdrawal for optimal ammonium removal. Moreover, VER appeared to have limited negative effect on sludge concentration and yield, while the membrane cleaning frequency slightly increased for increasing VER.

Application of sequencing batch membrane bioreactors (SB-MBR) for the treatment of municipal wastewater

Laera G;Lopez A
2011

Abstract

Sequencing batch membrane bioreactors can be a good option in up-grading small municipal plant and for industrial applications, maintaining some of the advantages of both original technologies (effluent quality improvement, flexibility and simplicity of realization, operation and control). In this study, the effects of volumetric exchange ratio (VER) and aeration/filtration strategy have been evaluated. Moreover, with the adoption of cycles shorter than 8 h, the opportunity of further simplification of the membrane operation has been tested by choosing a continuous filtration mode instead of the usual short cycle of permeation/relaxation. Two lab-scales MBR equipped with Zenon hollow fiber modules were fed on real primary effluent. For all tests, hydraulic retention time of 10 h and sludge retention time of 60 days have been adopted. Different cycles have been investigated, lasting between 1 and 8 h and all comprising an anoxic phase to allow for denitrification. Operation at low VER resulted in better effluent quality with no limitations to the denitrification phase. For VER >33% a pre-aeration step was required before effluent withdrawal for optimal ammonium removal. Moreover, VER appeared to have limited negative effect on sludge concentration and yield, while the membrane cleaning frequency slightly increased for increasing VER.
2011
Istituto di Ricerca Sulle Acque - IRSA
continuous filtration
membrane bioreactor
nitrogen removal
SBR
volumetric exchange ratio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/50413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact