The water resource is severely compromised by climate change, and its availability and quality can no longer be taken for granted, even in places considered pristine, such as mountains. In this study, we evaluated the water colour variability of three artificial mountain lakes located in a relatively small basin (Western Italian Alps) at high elevations, and related this variability to the local climate conditions of the hydrological basin to which they belong. We estimated the dominant wavelength (DW) of lake water from Sentinel-2 acquisitions for the period 2017–2022, performing a chromaticity analysis. We correlated DW with climatic parameters recorded by two automated weather stations. Average DW varies from 497 nm of Serrù Lake and Agnel Lake to 512 nm of Lake Ceresole, where DW varies seasonally (variation of 75–100 nm in one year). During April–July, the DW of Lake Ceresole is significative correlated with air temperatures and snow cover (−0.8 and +0.8, respectively). During August–October, the relationship with temperature decreases to −0.5, and a correlation of 0.5 with the amount of rainfall appears. This work shows that mountain lake waters can exhibit variable quality (expressed here by water colour) in response to meteorological and hydrological conditions and events.

Water Colour Changes in High-Elevation Alpine Lakes during 2017–2022: A Case Study of the Upper Orco Valley Catchment

Erica Matta
Primo
;
Mariano Bresciani;Claudia Giardino;Marta Chiarle;Guido Nigrelli
2024

Abstract

The water resource is severely compromised by climate change, and its availability and quality can no longer be taken for granted, even in places considered pristine, such as mountains. In this study, we evaluated the water colour variability of three artificial mountain lakes located in a relatively small basin (Western Italian Alps) at high elevations, and related this variability to the local climate conditions of the hydrological basin to which they belong. We estimated the dominant wavelength (DW) of lake water from Sentinel-2 acquisitions for the period 2017–2022, performing a chromaticity analysis. We correlated DW with climatic parameters recorded by two automated weather stations. Average DW varies from 497 nm of Serrù Lake and Agnel Lake to 512 nm of Lake Ceresole, where DW varies seasonally (variation of 75–100 nm in one year). During April–July, the DW of Lake Ceresole is significative correlated with air temperatures and snow cover (−0.8 and +0.8, respectively). During August–October, the relationship with temperature decreases to −0.5, and a correlation of 0.5 with the amount of rainfall appears. This work shows that mountain lake waters can exhibit variable quality (expressed here by water colour) in response to meteorological and hydrological conditions and events.
2024
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA - Sede Secondaria Milano
Istituto di Ricerca per la Protezione Idrogeologica - IRPI - Sede Secondaria Torino
water colour; high-elevation lakes; Sentinel-2; AWS; climate
File in questo prodotto:
File Dimensione Formato  
water-16-01057-v3.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/504981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact