The marine biological carbon pump (BCP) stores carbon in the ocean interior, isolating it from exchange with the atmosphere and thereby coregulating atmospheric carbon dioxide (CO2). As the BCP commonly is equated with the flux of organic material to the ocean interior, termed “export flux,” a change in export flux is perceived to directly impact atmospheric CO2, and thus climate. Here, we recap how this perception contrasts with current understanding of the BCP, emphasizing the lack of a direct relationship between global export flux and atmospheric CO2. We argue for the use of the storage of carbon of biological origin in the ocean interior as a diagnostic that directly relates to atmospheric CO2, as a way forward to quantify the changes in the BCP in a changing climate. The diagnostic is conveniently applicable to both climate model data and increasingly available observational data. It can explain a seemingly paradoxical response under anthropogenic climate change: Despite a decrease in export flux, the BCP intensifies due to a longer reemergence time of biogenically stored carbon back to the ocean surface and thereby provides a negative feedback to increasing atmospheric CO2. This feedback is notably small compared with anthropogenic CO2 emissions and other carbon-climate feedbacks. In this Opinion paper, we advocate for a comprehensive view of the BCP's impact on atmospheric CO2, providing a prerequisite for assessing the effectiveness of marine CO2 removal approaches that target marine biology.
Misconceptions of the marine biological carbon pump in a changing climate: Thinking outside the “export” box
Landolfi A.
;
2024
Abstract
The marine biological carbon pump (BCP) stores carbon in the ocean interior, isolating it from exchange with the atmosphere and thereby coregulating atmospheric carbon dioxide (CO2). As the BCP commonly is equated with the flux of organic material to the ocean interior, termed “export flux,” a change in export flux is perceived to directly impact atmospheric CO2, and thus climate. Here, we recap how this perception contrasts with current understanding of the BCP, emphasizing the lack of a direct relationship between global export flux and atmospheric CO2. We argue for the use of the storage of carbon of biological origin in the ocean interior as a diagnostic that directly relates to atmospheric CO2, as a way forward to quantify the changes in the BCP in a changing climate. The diagnostic is conveniently applicable to both climate model data and increasingly available observational data. It can explain a seemingly paradoxical response under anthropogenic climate change: Despite a decrease in export flux, the BCP intensifies due to a longer reemergence time of biogenically stored carbon back to the ocean surface and thereby provides a negative feedback to increasing atmospheric CO2. This feedback is notably small compared with anthropogenic CO2 emissions and other carbon-climate feedbacks. In this Opinion paper, we advocate for a comprehensive view of the BCP's impact on atmospheric CO2, providing a prerequisite for assessing the effectiveness of marine CO2 removal approaches that target marine biology.File | Dimensione | Formato | |
---|---|---|---|
Global Change Biology - 2024 - Frenger.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.