Among 2D materials, exfoliated black phosphorus (or phosphorene) shows great promise for applications in biological domains. However, despite its performances, little is known about the intricate and dynamic interactions that this material can form with proteins. This increases the risk of off-target effects and adds complexity in designing phosphorene-based devices with tailored properties. In this study, we present a straightforward and easily implementable pipeline that integrates spectroscopies with Molecular Dynamics simulations to explore the dynamic interplay between phosphorene and a protein system. Using lysozyme as a deeply investigated reference protein, we employed two theoretical protein models with unique secondary structure folds to increase the descriptive power of the approach and disentangle the complexity and variability of experimental data into a few primary drivers of protein-phosphorene interactions. Our results show that the 2D material does not significantly alter the protein structure, but the observed conformational changes are influenced by the secondary fold. Indeed, while the beta structure interacts mainly through unfolded regions, the alpha fold favours phosphorene binding through structured clusters of residues, leading to more significant structural and dynamic perturbations. By utilizing this pipeline, we have gained valuable insights into the molecular recognition mechanism of phosphorene, enhancing the development of improved phosphorene-based devices. In addition, our methodology offers potential for further applications in biomedicine to characterise interfaces between other 2D (nano)materials and biological entities.

Exploring phosphorene-protein interactions: An integrated computational and spectroscopic investigation

Rinaldi, Silvia;Caporali, Maria;Serrano-Ruiz, Manuel;Peruzzini, Maurizio;Ienco, Andrea;
2024

Abstract

Among 2D materials, exfoliated black phosphorus (or phosphorene) shows great promise for applications in biological domains. However, despite its performances, little is known about the intricate and dynamic interactions that this material can form with proteins. This increases the risk of off-target effects and adds complexity in designing phosphorene-based devices with tailored properties. In this study, we present a straightforward and easily implementable pipeline that integrates spectroscopies with Molecular Dynamics simulations to explore the dynamic interplay between phosphorene and a protein system. Using lysozyme as a deeply investigated reference protein, we employed two theoretical protein models with unique secondary structure folds to increase the descriptive power of the approach and disentangle the complexity and variability of experimental data into a few primary drivers of protein-phosphorene interactions. Our results show that the 2D material does not significantly alter the protein structure, but the observed conformational changes are influenced by the secondary fold. Indeed, while the beta structure interacts mainly through unfolded regions, the alpha fold favours phosphorene binding through structured clusters of residues, leading to more significant structural and dynamic perturbations. By utilizing this pipeline, we have gained valuable insights into the molecular recognition mechanism of phosphorene, enhancing the development of improved phosphorene-based devices. In addition, our methodology offers potential for further applications in biomedicine to characterise interfaces between other 2D (nano)materials and biological entities.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Phosphorene, Proteins, Biological interfaces, Molecular dynamics, Spectroscopic investigation
File in questo prodotto:
File Dimensione Formato  
FlatChem 48 (2024) 100752.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.59 MB
Formato Adobe PDF
3.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/505121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact