Evaluating the complexity of a target word in a sentential context is the aim of the Lexical Complexity Prediction task at SemEval-2021. This paper presents the system created to as- sess single words lexical complexity, combin- ing linguistic and psycholinguistic variables in a set of experiments involving random forest and XGboost regressors. Beyond encoding out-of-context information about the lemma, we implemented features based on pre-trained language models to model the target word’s in-context complexity.

archer at SemEval-2021 task 1: Contextualising lexical complexity

irene russo
Primo
2021

Abstract

Evaluating the complexity of a target word in a sentential context is the aim of the Lexical Complexity Prediction task at SemEval-2021. This paper presents the system created to as- sess single words lexical complexity, combin- ing linguistic and psycholinguistic variables in a set of experiments involving random forest and XGboost regressors. Beyond encoding out-of-context information about the lemma, we implemented features based on pre-trained language models to model the target word’s in-context complexity.
2021
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
lexical complexity
File in questo prodotto:
File Dimensione Formato  
2021.semeval-1.90.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 149.51 kB
Formato Adobe PDF
149.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/505402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact