Despite the high number of machine learning models presented in the last few years for automatically annotating medical images with deep learning models, clear baselines to compare methods upon are still missing. We present an initial set of experimentations of a standard encoder-decoder architecture with the Indiana University Chest X-ray dataset. The experiments include different convolutional architectures and decoding strategies for the recurrent decoder module. The results here presented could potentially benefit those tackling the same task in languages with fewer linguistic resources than those available in English.

Baselines for Automatic Medical Image Reporting

Franco Alberto Cardillo
Primo
2023

Abstract

Despite the high number of machine learning models presented in the last few years for automatically annotating medical images with deep learning models, clear baselines to compare methods upon are still missing. We present an initial set of experimentations of a standard encoder-decoder architecture with the Indiana University Chest X-ray dataset. The experiments include different convolutional architectures and decoding strategies for the recurrent decoder module. The results here presented could potentially benefit those tackling the same task in languages with fewer linguistic resources than those available in English.
2023
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
978-3-031-29717-5
Medical Image Analysis
Neural Language Generation
Deep Learning
File in questo prodotto:
File Dimensione Formato  
Cardillo - 2023 - Baselines for Automatic Medical Image Reporting.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 592.9 kB
Formato Adobe PDF
592.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/505702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact