Despite the high number of machine learning models presented in the last few years for automatically annotating medical images with deep learning models, clear baselines to compare methods upon are still missing. We present an initial set of experimentations of a standard encoder-decoder architecture with the Indiana University Chest X-ray dataset. The experiments include different convolutional architectures and decoding strategies for the recurrent decoder module. The results here presented could potentially benefit those tackling the same task in languages with fewer linguistic resources than those available in English.

Baselines for Automatic Medical Image Reporting

Franco Alberto Cardillo
Primo
2023

Abstract

Despite the high number of machine learning models presented in the last few years for automatically annotating medical images with deep learning models, clear baselines to compare methods upon are still missing. We present an initial set of experimentations of a standard encoder-decoder architecture with the Indiana University Chest X-ray dataset. The experiments include different convolutional architectures and decoding strategies for the recurrent decoder module. The results here presented could potentially benefit those tackling the same task in languages with fewer linguistic resources than those available in English.
Campo DC Valore Lingua
dc.authority.anceserie LECTURE NOTES IN NETWORKS AND SYSTEMS en
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Franco Alberto Cardillo en
dc.authority.project corda__h2020::a0520286b7e6ad6e9c871d7ab8f2c196 en
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/12/06 19:06:37 -
dc.date.available 2024/12/06 19:06:37 -
dc.date.firstsubmission 2024/10/08 11:21:53 *
dc.date.issued 2023 -
dc.date.submission 2024/10/08 11:21:53 *
dc.description.abstracteng Despite the high number of machine learning models presented in the last few years for automatically annotating medical images with deep learning models, clear baselines to compare methods upon are still missing. We present an initial set of experimentations of a standard encoder-decoder architecture with the Indiana University Chest X-ray dataset. The experiments include different convolutional architectures and decoding strategies for the recurrent decoder module. The results here presented could potentially benefit those tackling the same task in languages with fewer linguistic resources than those available in English. -
dc.description.allpeople Cardillo, FRANCO ALBERTO -
dc.description.allpeopleoriginal Franco Alberto Cardillo en
dc.description.fulltext restricted en
dc.description.numberofauthors 1 -
dc.identifier.doi 10.1007/978-3-031-29717-5_4 en
dc.identifier.isbn 978-3-031-29717-5 en
dc.identifier.source manual *
dc.identifier.uri https://hdl.handle.net/20.500.14243/505702 -
dc.identifier.url https://link.springer.com/chapter/10.1007/978-3-031-29717-5_4 en
dc.language.iso eng en
dc.publisher.country CHE en
dc.publisher.name Springer International Publishing en
dc.publisher.place Springer Nature Switzerland AG en
dc.relation.conferencedate 19-20 maggio, 2022 en
dc.relation.conferencename 1st Serbian International Conference on Applied Artificial Intelligence en
dc.relation.conferenceplace Kragujevac, Serbia en
dc.relation.firstpage 58 en
dc.relation.ispartofbook Applied Artificial Intelligence: Medicine, Biology, Chemistry, Financial, Games, Engineering en
dc.relation.lastpage 74 en
dc.relation.numberofpages 17 en
dc.relation.projectAcronym DeepHealth en
dc.relation.projectAwardNumber 825111 en
dc.relation.projectAwardTitle Deep-Learning and HPC to Boost Biomedical Applications for Health en
dc.relation.projectFunderName European Commission en
dc.relation.projectFundingStream Horizon 2020 Framework Programme en
dc.relation.volume 659 en
dc.subject.keywordseng Medical Image Analysis -
dc.subject.keywordseng Neural Language Generation -
dc.subject.keywordseng Deep Learning -
dc.subject.singlekeyword Medical Image Analysis *
dc.subject.singlekeyword Neural Language Generation *
dc.subject.singlekeyword Deep Learning *
dc.title Baselines for Automatic Medical Image Reporting en
dc.type.circulation Internazionale en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.impactfactor si en
dc.type.invited contributo en
dc.type.miur 273 -
dc.type.referee Comitato scientifico en
iris.mediafilter.data 2025/04/16 03:58:46 *
iris.orcid.lastModifiedDate 2024/12/06 19:06:37 *
iris.orcid.lastModifiedMillisecond 1733508397333 *
iris.sitodocente.maxattempts 1 -
iris.unpaywall.bestoahost repository *
iris.unpaywall.doi 10.1007/978-3-031-29717-5_4 *
iris.unpaywall.hosttype repository *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://doi.org/10.5281/zenodo.6913811 *
iris.unpaywall.license cc-by *
iris.unpaywall.metadataCallLastModified 10/12/2025 03:53:56 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1765335236287 -
iris.unpaywall.oastatus green *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
File Dimensione Formato  
Cardillo - 2023 - Baselines for Automatic Medical Image Reporting.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 592.9 kB
Formato Adobe PDF
592.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/505702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact